# embedded VISIMN Summit

Making Edge Al Inference Programming Easier and Flexible

Manisha Agrawal Product Marketing Engineer September 2020

TEXAS INSTRUMENTS

#### Agenda

embedded VISION Summit







© 2020 Texas Instruments



🐌 Texas Instruments

#### **Edge Inference Programming Challenges**





b Texas Instruments

#### **Open Source Inference Framework Advancement**

#### embedded VISICN SUMMIT



Texas Instruments

### **Promising Open Source Framework Meeting Majority Customers Need**







#### **Open Source TFLite RunTime**





#### **TFLIte RunTime**

 Supporting all inference operators on CPU / GPU



#### **Open Source ONNX RunTime**





#### **ONNX RunTime**

 Supporting all inference operators on CPU / GPU

# **Open Source Inference Framework with Hooks for Specialized Hardware**



#### **Compiler & RunTime**

- Supporting all inference operators on CPU / GPU
- Backend for specialized hardware



embedded

# **TI's First Jacinto<sup>™</sup> 7 SoC for Edge Inference**



#### Accelerating key functions lowers power

- DSP for computer vision
- Vision processing
- Video, graphics
- Deep learning

#### Industry's most efficient DL architecture

- Enables passively-cooling designs
- 90% utilization of deep
   learning accelerator due to
   smart memory system

Automotive Quality-ready process technology

 Power reduction is achieved through smart architecture, not process





© 2020 Texas Instruments

## **TI Deep Learning (TIDL) Inference Framework**



NRE-free, royalty-free tools enable high-performance, fixed-point inference on TI processors





#### **TIDL Accelerate All Operators You Rely On**





Refer to latest Processor SDK user guide document for complete list of accelerated operators and tested models: https://software-dl.ti.com/jacinto7/esd/processor-sdk-rtos-jacinto7/latest/exports/docs/tidl j7 01 02 00 09/ti dl/docs/user guide html/md tidl layers info.html



٠

## Texas Instruments adopting open source framework with TI Deep Learning (TIDL) Integration





#### **Open source adoption**

• Integrating TIDL RunTime in open source RunTime engine







**TEXAS INSTRUMENTS** 

## Texas Instruments adopting open source framework with TI Deep Learning (TIDL) Integration





#### **Open source adoption: TVM Compiler**

 Integrating TI Optimizer in open source TVM Compiler tool





# Now Accelerate All Your Models With Open Source API



4 Texas Instruments

# Seamless Migration From PC Validation to Inference Deployment



Your DL programming experience on Jacinto 7 processors is the same as desktop computer programming.

This includes -

- Open source LINUX callable APIs in Python / C / C++ between PC and target board
- Jupyter Notebook examples

Download directly from ti.com

http://www.ti.com/tool/PROCESSOR-SDK-DRA8X-TDA4X





# Programming Example: Amazon SageMaker Neo & Neo-Al-DLR





#### **Programming Example: TensorFlow Lite**



| <pre>def infer_tflite_model():</pre>                                                                                                                                |                              |                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------|
| <pre>interpreter = <u>tf.lite.Interpreter(</u>model_path=args.model_path)<br/>interpreter.allocate_tensors()</pre>                                                  | Create RunTime               |                 |
| <pre>input_details = interpreter.get_input_details() output_details = interpreter.get_output_details()</pre>                                                        |                              |                 |
| print(output_details)<br># check the type of the input tensor<br>floating_model = input_details[0]['dtype'] == np.float32                                           |                              |                 |
| <pre># NxHxWxC, H:1, W:2 height = input_details[0]['shape'][1] width = input_details[0]['shape'][2] img = Image.open(args.input_file).resize((width, height))</pre> |                              |                 |
| # add N dim<br>input_data = np.expand_dims(img, axis=0)                                                                                                             | Init time: Hook TIDL backend |                 |
| if floating_model:<br>input_data = (np.float32(input_data) - args.input_mean) / args.inpu                                                                           |                              |                 |
| <pre>interpreter.set_tensor(input_details[0]['index'], input_data)</pre>                                                                                            |                              |                 |
| <pre>tidl_delegate =TfLiteTIDLDelegateCreate(); interpreter.ModifyGraphWithDelegate(tidl_delegate);</pre>                                                           |                              | RunTime         |
| interpreter.invoke()                                                                                                                                                | Run inference                | <b>N</b> arrine |
| output_data = interpreter.get_tensor(output_details[0]['index']) <                                                                                                  |                              |                 |
| <pre>top_k = <u>results.argsort()</u>[-5:][::-1] print(top_k)</pre>                                                                                                 | Get output                   |                 |
| <pre>infer_tflite_model()</pre>                                                                                                                                     |                              |                 |

🦊 Texas Instruments

#### Deep Learning System Performance on Jacinto-7 TDA4VM: Example demo



5 simultaneous deep learning algorithms on 3x 1MP camera each @ ~16 fps

- Parking spot detection
- Vehicle detection
- Semantic segmentation
- Motion segmentation
- Depth estimation

Inference resolution: 3x768x384

# Resource loadingA72:6%C7x+MMA:94%DDR BW:26%



🔱 Texas Instruments

#### Key Takeaways: Deep Learning Edge Inference at TI

- Easier to use
  - Opensource Linux callable RunTime APIs supported to program SoC
  - Embedded development environment same as a desktop computer environment
- More flexible
  - Supports TFLite, ONNX-RT or TVM/Neo-AI-DLR
  - Supports compilation at the edge or in the cloud with Amazon SageMaker Neo
- Provide wide model coverage
  - All TFLite, ONNX, TVM and SageMaker Neo models supported on TI SoCs
- High compute performance, high throughput, low latency and low power consumption
  - Accelerates the model on TI's deep learning accelerator C7x+MMA to provide the best combination of system power, deep learning performance and latency at the edge

Jacinto 7 processor silicon is available today!



#### **Explore Deep Learning With TI Today**



Full development

TDA4 EVM

http://www.ti.com/tool/TDA4VMXEVM

Turn-key designs

Automotive version of TDA4V Mid http://www.ti.com/tool/D3-3P-TDAX-DK



Software development kits

TI Processor SDK – Seamlessly reuse and migrate Linux, Linux-RT and TI-RTOS software across TI processors

http://www.ti.com/tool/PROCESSOR-SDK-DRA8X-TDA4X

Support

https://e2e.ti.com



Open source RunTime engines with TIDL acceleration is packaged as part of TI's NRE-free, royalty-free Processor SDK!

Texas Instruments



