embedded VISIMN Summit

Machine Learning Based Perception on a Tiny Low-Power FPGA

Hoon Choi Fellow, R&D Sept. 2020

SEMICONDUCTOR.

24Mhz clock	Layers	Resolution	MOPS	FPS	Avg. pwr	FPGA	SPI	Max FPS
Character classification	4,4,1	32	3	10.0	1	1	0	100
Static gesture	6,4,1	32	6	10.0	1	1	0	48
Dynamic gesture	7,4,1	32	8	10.0	2	2	0	35
Human presence	8,4	64	10	1.0	1	1	0	N/A
	8,4	64	32	5.0	7	7	0	10
	8,4	64	32	10.0	13	13	0	10
	8,4	128	191	2.0	19	13	6	2
Front+Shoulder	7,3	64	34	9.5	19	13	6	9.5
	9,4	160	282	1.1	19	13	6	1.1
Place	9,5,1	160	411	0.8	19	13	6	0.8
			_					

Layers = CONV & BN, POOL, FC; PWR=mW

For VGG type network. Mobilenet delivers 3~4x FPS

Network Selection & Optimization

Dynamic Gesture

9: none of above

Attention Tracking & Shoulder Surfer Detection

IR-based Attention Tracking

Attention tracking in darkness

Local Face Recognition + Smile Detection

embedded VISION SUMMIT

Recognize a person among registered persons

Face recognition and then smile detection

Place Classification (Vision only)

Place Classification (Vision + Audio)

Restaurant with human chatting noise

Place Recognition

Registered places (one shot learning)

Number: 8

SEMICONDUCTOR.

Number:

Place Recognition

On-the-fly Reprogramming

Self reprogramming

Control of reprogram by device driver

Supports multiple HWs & ML FWs for different applications

Programming in milliseconds

Sens

Design Methodology

SensAl Stack Roadmap

Silicon Performance

	iCE40UP	CrossLink-NX 17	CrossLink-NX 40	ECP5	Jedi 100	
Footprint (mm)	2.15 x 2.55	3.7 x 4.1	6 x 6	10 x 10	9 x 9	
# of DSPs	8	24	56	156	156	
Distributed Memory (kbits)	120	432	1512	3744	3400	
SPRAM (kbits)	1024	2560	1024		3072	
Quantization	8b	8b	8b	8b	8b	
Speed (MHz)	40	150	150	100	150	
GOPS	0.72	7.2	10.8	28.8	43.2	
Power (W)	0.01	0.05	0.2	0.8	0.45	
GOPS/W	72	144	54	36	96	
Power	****	★ ★ ★ ★ ☆	★★★☆☆	* * ☆ ☆ ☆	* * ☆ ☆ ☆	
Performance	* * ☆ ☆ ☆	* * * ☆ ☆	$\star \star \star \div \div$	★ ★ ★ ★ ☆	$\star\star\star\star\star$	
Size	$\star \star \star \star \star$	★★★★☆	* * * ☆ ☆	* * ☆ ☆ ☆	**☆☆☆	

Summary

Lattice sensAl Stack

https://www.latticesemi.com/en/Solutions/Solutions/SolutionsDetails02/sensAl

Neural Network Compiler

https://www.latticesemi.com/en/Products/DesignSoftwareAndIP/AIML/NeuralNetworkCo mpiler

sensAl boards, demos, IP cores, and reference designs

https://www.latticesemi.com/solutionsearch?qtag=1d7036d97cf446db8bd20f19a07d702f &active=sensai

