embedded VISIMN Summit

Cadence Tensilica Edge Al Processor IP Solutions for Broad Market Use Cases

Pulin Desai Group Director, Vision & Al Product Marketing September 2020

cādence[®]

Cadence Tensilica Processor and DSP IP Business

Examples of Edge AI: Voice & Vision

cādence

Mobile

Smart Surveillance

Vision AI

AR/VR

Autonomous Vehicles

Processing Flow for Inference in the Embedded System

Sensing Pre Post Inference The outside Processing Processing World Where does data come from? Preparing the \triangleright Any post processing \geq Al to analyze the incoming data \geq Image sensor data for Analysis of data Radar Vision \geq AI has other layers which are beyond Lidar convolution Microphone Voice

embedded

- Any sensing application always has a pre & post processing
- Need to solve the whole data path

cādence[°]

Machine Learning Innovations Using Microphone as a Sensor

embedded

<u>Privacy, latency, power</u>, and <u>availability of network drives</u> <u>voice UI and other ML applications</u> to edge devices

cādence°

System Integration – Smart Speaker Example

cādence°

Computer Vision and Image Processing Pipeline

Usually a Hardware Block

cādence

• Any Vision application has a pre & post processing

Vision Applications: Mix of Vision and AI

- All use cases still have mix of vision and AI operations
- Need for both vision and AI processing in the camera pipeline

cādence[°]

Multi Net Application Case Study MTCNN: A Face Detection Neural Network

In MTCNN use case with 3 separate nets (P/O/R), <u>glue processing is</u> <u>inserted between the nets to perform</u> <u>end to end face detection</u>

Even if entire networks are sped up the application <u>speedup will be</u> <u>bottlenecked by glue processing which</u> does not need to be "standardized"

<u>A high performance DSP</u> targeted at Vision applications can keep up with the evolving glue processing requirements

Hypothetical Speedup when only Convolution is Accelerated

- Convolutions are common target for acceleration with hardware
- As convolutions speed up, different networks will achieve varying amounts of overall speedup
 - <u>Some networks achieve only</u> <u>modest speedups</u> <u>bottlenecked by "other"</u> <u>layers</u>
- "Other" layers need to keep up with convolutions acceleration

cādence°

Significant Cycle Consuming Non-Convolution Layers

- The set of "other" layers is large and continuously evolving
 - Non-convolution layers can be 20% to as high as >80% of the cycles
- A high performance DSP targeted at NN applications can keep up with the evolving requirements

cādence[°]

Neural Network Deployment Options in Embedded Systems

Metric: Option	Flexibility	Power	Performance	Time to Market
CPU	✓ Highly flexible	Very high	Depends	Fast
CPU+GPU	✓ Highly flexible	Very high	Depends but could be high	Fast
Hardware Development	Not flexible	Low	High	Long development cycle and verification
Programmable DSP	\checkmark Highly flexible	✓ Low	Depends	✓ Fast
Programmable DSP+ HW accelerator	\checkmark Highly flexible	✓ Low	High	✓ Fast

cādence[°]

Tensilica AI Portfolio: AI Inference at the Edge

embedded

HiFi DSP Is Ideal for ML Solutions on the Edge

Tensilica[®] HiFi DSP is the leading IP solution for audio, speech, and machine learning applications

Cadence enables developers to train and seamlessly deploy their machine learning applications on HiFi DSPs using TensorFlow Lite for Microcontrollers

HiFi DSP has extensive production-ready software solutions from Cadence and the largest ecosystem with 160+ software partners

Tensilica[®] Xtensa Audio Framework (XAF) accelerates integration of ML and traditional audio workloads, reducing time to market

cādence[®]

Vision P6/Q7: Ideal DSP for Vision + AI

Vision Acceleration	 512-bit SIMD 5 VLIW Slots 8bit/16bit/32bit int, SP and HP FP Support 0.7 to 1.7 TOPS
AI Acceleration	• 256/512 8-bit MAC • FP16 support
High Data Throughput	 1024 bit memory I/F Scatter Gather Technology Multi-channel iDMA 128/256 bit Axi
Lib & Tools	 OpenCV Base imaging/vision Lib, SLAM Lib OpenCL, Halide, OpenVX Support NN Compiler (ONNX & GLOW) & Android NN API Support
a d e n c e°	© 2020 Cadence Design Systems

Tensilica DNA Processor: Single Processor for Vision & Al Sparse Compute Engine & Scalable

cādence[°]

Typical Vision + AI Work: On Tensilica DNA Processor

Pre-Processing Runs on Vision P6	Al Workload (Convolution) Runs XNNE HW of DNA Processor	Post-Processing Runs on Vision P6
Multi-scale Pyramid Color-space Noise Reduction	NN Workload Mostly various convolution Non-Convolution Layer	Non-Max Suppression (NMS) ROI Align: Bilinear Interpolation De-blurring HDR
	© 2020 Cadence Design Systems	Example Networks: Yolo, SSD, MaskRCNN, CRNN Could be >10% cycles Depends on # of detection Depends on accuracy

2020 embec

dec

cādence[®]

Tensilica AI SW Tools Portfolio

XNNC-Link NN Code Generation for customer's AI Accelerator

cādence

Vision DSP + Customer's accelerator for your Al Solution

Edge-AI products with Cadence Tensilica AI IP

меділтек	"MediaTek has confirmed that the P60 integrates a <u>Cadence Vision P6</u> <u>core</u> for its AI accelerator." Source (1)	NXP i.MX-RT600 HiFi 4 for audio and voice processing
меділтек	Mediatek i500 : " Al acceleration for APU based on <u>Tensilica Vision P6</u> (i500) " Source: (2)	"NXP's enablement for Glow is tightly coupled with the Neural Network Library (NNLib) that Cadence provides for its <u>Tensilica</u> <u>HiFi 4 DSP</u> delivering 4.8GMACs of performance." Source: (5)
TOSHIBA	"Toshiba Selects Cadence <u>Tensilica Vision P6</u> DSP as Image Recognition Processor for its Next-Generation ADAS Chip" Source (3)	Baidu HongHu HiFi 4 for audio and voice processing
Gneron	Kneron, the San Diego and Taipei-based low-power edge AI startup, "KL720 NPU IP integrated with <u>Cadence Tensilica Vision P6 DSP IP</u> " Source (4)	"Baidu today released its new chipset Honghu at the annual Al Developer Conference in Beijing. It features <u>HiFi4</u> custom instruction set, dual-core DSP, and only 100mV power dissipation on average." Source: (6)

- Source 3: https://www.mediatek.com/blog/mediateks-rich-iot-sdk-v20-0-release-available-now-for-i300-and-i500-chipset-series
- Source 4: https://www.eetimes.com/kneron-raises-40m-for-next-gen-edge-ai-chip/
- Source 5: https://media.nxp.com/news-releases/news-release-details/industrys-first-mcu-based-implementation-glow-neural-network
- Source 6: https://en.pingwest.com/w/2549

cādence[°]

Source 1: https://www.eetimes.com/mobile-ai-race-unfolds-at-mwc/#

Source 2: https://www.cadence.com/en_US/home/company/newsroom/press-releases/pr/2019/toshiba-selects-cadence-tensilica-vision-p6-dsp-as-image-recogni.html

- ns embedde VISION SUMMI
- Voice+AI & Vision+AI for edge requires pre & post processing in addition to neural network processing
- In addition to convolution layers (which are MAC heavy) other layers take considerable cycles
 - MAC acceleration only does not accelerate the AI performance
- Combination of hardware acceleration for convolution and programmable DSP provides the best solution for Edge AI workload
 - Single hardware can be used for both concurrent Vision+AI and Voice+AI workload
- Cadence Tensilica provides Vision+AI and Voice+AI HW IP with NN Compiler SW
 - Cadence Tensilica IP is shipping in large number of edge-ai products

cādence°

Resource Slide

Cadence Resources

https://www.cadence.com/en_US/

home/tools/ip/tensilica-processorip.html

https://ip.cadence.com/vision https://ip.cadence.com/ai External Resources https://onnx.ai/ https://onnx.ai/supported-tools.html https://www.edge-aivision.com/2019/10/cadence-demonstrationof-a-recurrent-neural-network-based-showattend-and-tell-on-a-tensilica-dsp-platform/

cādence®

© 2017 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and the other Cadence marks found at <u>www.cadence.com/go/trademarks</u> are trademarks or registered trademarks of Cadence Design Systems, Inc. All other trademarks are the property of their respective owners.