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Executive Summary
Abstract
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Efficient edge 
computing is the 

foundation underlying 
AI and computer vision 

applications in 
autonomous vehicles, 
cameras, drones and 

many other 
applications 

Because deep neural 
networks (DNNs) are 

memory and compute 
intensive, creating 

efficient 
implementations of 

DNNs requires frugal 
use of memory and 
memory bandwidth, 

along with computing 
power

In this talk, we’ll 
present CEVA’s novel 
approach to enable 
efficient memory 

allocation to enable 
implementing DNNs 
under strict size and 
power constraints

Our approach utilizes a 
unified computational 
graph and takes into 
account the differing 

characteristics of 
different classes of 

memory (on-chip L1 
and L2 SRAM and 

external DDR)

We will also introduce        
CEVA-XM6 and CEVA 

SensPro processors for 
vision and AI
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CEVA SensPro Vision and AI processor
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Block 
Diagram
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CEVA NeuPro-S Vision and AI processor

4

System Block 
Diagram
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CDNN Overview
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CDNN Usage 
Flow
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Computational graph

6

• A neural network can be described by a computational graph

• The computational graph is a directed graph that has two types of nodes: data nodes and operation nodes

• A directed edge from a data node to an operation node means that the operation takes the data as its input, while a 
directed edge from an operation node to a data node means that the operation produces the data as its output

Figure 1. An example computational graph: Squares denote tensor data (E: external, C: constant, V: variable, 
T: regular tensor), ellipses denote operations 
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Memory allocation algorithm (1/3)
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Problem Description Goal Constraints

• Minimize overall 
network memory 
consumption

• Maximize on-chip L1 
and L2 SRAM BW

• Minimize external DDR 
BW

• L1 and L2 memories are 
fast but small in size 
(typically 
1MB – 4MB)

• Given a computational 
graph G with vertices 
and edges (V,E)

• Input: G=(V,E)

• Each node might have 
several input and 
output buffers

• Each buffer size is 
determined by the 
operation size
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Memory allocation algorithm (2/3)

8

800K

300K

1000K

200K

500K

20K

400K

100K

• Switch to a new graph in which the buffers are the nodes

• The 0-1 knapsack problem:

• Given n items with weights 𝑤𝑖 and costs 𝑝𝑖

• Let the indicator function be: 𝑥𝑖 = ቊ
1, 𝑖𝑡𝑒𝑚 𝑖 𝑖𝑠 𝑐ℎ𝑜𝑠𝑒𝑛
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Need to find a vector 𝒙 which satisfies

(1) max
𝒙

෍

𝑖=1

𝑛

𝑝𝑖𝑥𝑖

(2) ෍

𝑖=1

𝑛

𝑤𝑖𝑥𝑖 < 𝑊 Where W is maximum 

weight capacity 
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Memory allocation algorithm (3/3)
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• Graph G = (V,E) where each node holds a price 𝑝𝑖

• We want find a solution which maximizes L2 BW and minimizes the Total Cost 

• Let the indicator function be: 𝑥𝑖 = ቊ
1, 𝑖𝑡𝑒𝑚 𝑖 𝑖𝑠 𝑐ℎ𝑜𝑠𝑒𝑛
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Need to find a vector 𝒙 which satisfies:

(1) max
𝒙

෍

𝑖=1

𝑛

𝑝𝑖𝑥𝑖 = 𝐿2 𝐵𝑊

(2) 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 =෍

𝑖=1

𝑛

𝑤𝑖𝑥𝑖 < 𝑊

• Can be solved using dynamic programming

• Time complexity: 𝑂(𝑛𝑊)

• Space complexity: 𝑂(𝑛𝑊)
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Algorithm flow
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• Allocate buffer id for each layer.
Then take the maximum size for each buffer. The total external memory allocated 
would be (where n is maximum number of buffers used in parallel)

෍

𝑘=1

𝑛

max(𝐾. 𝑠𝑖𝑧𝑒)

• In this example, n equals to 3, and the total memory would be:
1000K + 800K + 700K = 2500K
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Optimization methods
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• Note that the way the algorithm assigns buffer id to each layer 
may affect the result

• In this example (highlighted) you’ll notice that swapping at the 
“branch point” between buffers B and C can save
around 690K
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Old MAX = 2.5MB
{1000K, 800K, 700K}

New MAX = 1.81MB
{1000K, 800K, 10K}
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DDR size reduction – Preliminary results
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• The numbers shown herein are a result of preliminary optimization 
effort and there is a need for further work and testing to confirm the 
results

• This optimization has improved also the L2 utilization

• A significant number of networks can now fit entirely into L2

• 66% of tested networks now fit entirely into a 2MB L2 
(previously 13%)

• 83% of tested networks now fit entirely into a 4MB L2 
(previously 38%)

• This Buffer size reduction method is performed on L2 memory as 
well
L2 Size

Amount of networks 
(in percentages) 

Before optimization:

Amount of networks 
(in percentages) 

After optimization:

2MB 13% 66%

4MB 38% 83%
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Merge Buffers Optimization Improvements
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• Overview

• This optimization takes advantage of the fact that in many convolutional 
networks the size of buffers decreases after the first few layers

• Thus, a buffer which might need to be large at the beginning (for example: 800K), 
often becomes very small towards the end of the network (for example: 200K)

• In this example (see diagram) the algorithm allocates 800K (The Maximum of 
Buffer A) + 700K (The Maximum of Buffer B) + 200K (The Maximum of Buffer C) = 
1.7MB

• The improved algorithm will allocate buffer C (200K) inside buffer A, since after 
layer-5 the size of buffer A is 500K

Buffer A  800K

Buffer A  500K Buffer C  200K
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Merge Buffers Optimization Improvements
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• Overview

• This optimization phase reduces even further the amount of external memory 
allocated in most of our supported networks 

Buffer A  
500K

Buffer C  200K
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Network Reduced by (in percentages)

Mobilenet_SSD (TensorFlowLite) 35%

Yolo_V3 (Caffe) 28%

Inception_V3 (TensorFlow) 15%

OpenPose_Coco (Caffe) 15%
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Summary and results – Classification networks
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Network DDR size reduction in % L2 – 4MB BW L2 BW Improvement in %

Alexnet -100% All in L2 100%

Inception v3 -100% All in L2 100%

Inception v4 -66.67% All in L2 100%

Resnet-50 -28.56% All in L2 100%

Resnet-18 -68.24% All in L2 100%

VGG16 -91.66% All in L2 100%

MobileNetV1 -100% All in L2 100%

MobileNetV2 -100% All in L2 100%

MobileNetV3 -90.27% All in L2 100%

Dense-Net121 -16.15% - -

ShuffleNet -100% All in L2 100%
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Summary and results – Detection 
networks
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Network DDR size reduction in % L2 – 4MB BW L2 BW Improvement in %

MobileNet-ssd -100% All in L2 100%

MTCNN onet -100% All in L2 100%

MTCNN pnet -100% All in L2 100%

MTCNN rnet -100% All in L2 100%

FRCNN -84.75% Partially in L2 53.95%

Yolov2 -77.87% All in L2 100%

Yolov3 -62.50% Partially in L2 101.53%
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Summary and results – Segmentation & RNN networks
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Network DDR size reduction in % L2 – 4MB BW L2 BW Improvement in %

Enet -69.12% Partially in L2 -

SegNet -71.45% Partially in L2 109.35%

ERFNet -89.20% - -

Deeplabv3 -56.95% - -

UNet -66.31% Partially in L2 -

ICNet -81.89% Partially in L2 -

FSRCNN -50.00% All in L2 100%

OpenPose -93.75% All in L2 100%

LSID -59.36% - -

Deepspeech1 -100% All in L2 100%

Deepspeech2 - - -
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Summary and conclusions
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• We introduced CEVA SensPro and NeuPro-S processors for AI 
and CV applications.

• These cores are complemented by CDNN, a highly optimized 
graph compiler and runtime framework.

• We have shown the results of an effort conducted at CEVA to 
improve network buffer allocation and reduce DDR BW. 

• At the same time, the L2 BW has increased significantly, 
thereby allowing many networks data to reside entirely in L2 
memory.

• Further testing has confirmed the initial results.
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Thank you

www.ceva-dsp.com


