
© 2020 CEVA

Resource allocation in AI / CV
applications
Rami Drucker, Neural Graph Compute Leader, Vision
BU, CEVA
September 2020

© 2020 CEVA

Executive Summary
Abstract

2

Efficient edge
computing is the

foundation underlying
AI and computer vision

applications in
autonomous vehicles,
cameras, drones and

many other
applications

Because deep neural
networks (DNNs) are

memory and compute
intensive, creating

efficient
implementations of

DNNs requires frugal
use of memory and
memory bandwidth,

along with computing
power

In this talk, we’ll
present CEVA’s novel
approach to enable
efficient memory

allocation to enable
implementing DNNs
under strict size and
power constraints

Our approach utilizes a
unified computational
graph and takes into
account the differing

characteristics of
different classes of

memory (on-chip L1
and L2 SRAM and

external DDR)

We will also introduce
CEVA-XM6 and CEVA

SensPro processors for
vision and AI

© 2020 CEVA

CEVA SensPro Vision and AI processor

3

Block
Diagram

© 2020 CEVA

CEVA NeuPro-S Vision and AI processor

4

System Block
Diagram

© 2020 CEVA

CDNN Overview

5

CDNN Usage
Flow

© 2020 CEVA

Computational graph

6

• A neural network can be described by a computational graph

• The computational graph is a directed graph that has two types of nodes: data nodes and operation nodes

• A directed edge from a data node to an operation node means that the operation takes the data as its input, while a
directed edge from an operation node to a data node means that the operation produces the data as its output

Figure 1. An example computational graph: Squares denote tensor data (E: external, C: constant, V: variable,
T: regular tensor), ellipses denote operations

© 2020 CEVA

Memory allocation algorithm (1/3)

7

800K

300K

1000K

200K

500K

20K

400K

100K

Problem Description Goal Constraints

• Minimize overall
network memory
consumption

• Maximize on-chip L1
and L2 SRAM BW

• Minimize external DDR
BW

• L1 and L2 memories are
fast but small in size
(typically
1MB – 4MB)

• Given a computational
graph G with vertices
and edges (V,E)

• Input: G=(V,E)

• Each node might have
several input and
output buffers

• Each buffer size is
determined by the
operation size

© 2020 CEVA

Memory allocation algorithm (2/3)

8

800K

300K

1000K

200K

500K

20K

400K

100K

• Switch to a new graph in which the buffers are the nodes

• The 0-1 knapsack problem:

• Given n items with weights 𝑤𝑖 and costs 𝑝𝑖

• Let the indicator function be: 𝑥𝑖 = ቊ
1, 𝑖𝑡𝑒𝑚 𝑖 𝑖𝑠 𝑐ℎ𝑜𝑠𝑒𝑛
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Need to find a vector 𝒙 which satisfies

(1) max
𝒙

෍

𝑖=1

𝑛

𝑝𝑖𝑥𝑖

(2) ෍

𝑖=1

𝑛

𝑤𝑖𝑥𝑖 < 𝑊 Where W is maximum

weight capacity

© 2020 CEVA

Memory allocation algorithm (3/3)

9

• Graph G = (V,E) where each node holds a price 𝑝𝑖

• We want find a solution which maximizes L2 BW and minimizes the Total Cost

• Let the indicator function be: 𝑥𝑖 = ቊ
1, 𝑖𝑡𝑒𝑚 𝑖 𝑖𝑠 𝑐ℎ𝑜𝑠𝑒𝑛
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Need to find a vector 𝒙 which satisfies:

(1) max
𝒙

෍

𝑖=1

𝑛

𝑝𝑖𝑥𝑖 = 𝐿2 𝐵𝑊

(2) 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 =෍

𝑖=1

𝑛

𝑤𝑖𝑥𝑖 < 𝑊

• Can be solved using dynamic programming

• Time complexity: 𝑂(𝑛𝑊)

• Space complexity: 𝑂(𝑛𝑊)

800K

300K

1000K

200K

500K

20K

400K

100K

© 2020 CEVA

Algorithm flow

10

• Allocate buffer id for each layer.
Then take the maximum size for each buffer. The total external memory allocated
would be (where n is maximum number of buffers used in parallel)

෍

𝑘=1

𝑛

max(𝐾. 𝑠𝑖𝑧𝑒)

• In this example, n equals to 3, and the total memory would be:
1000K + 800K + 700K = 2500K

800K

700K

600K

80K

700K

10KC

A

A

B

A

B

A

B1000K

600K

© 2020 CEVA

Optimization methods

11

• Note that the way the algorithm assigns buffer id to each layer
may affect the result

• In this example (highlighted) you’ll notice that swapping at the
“branch point” between buffers B and C can save
around 690K

800K

700K

600K

80K

700K

10KB

A

A

B

A

B

A

C1000K

600K

Old MAX = 2.5MB
{1000K, 800K, 700K}

New MAX = 1.81MB
{1000K, 800K, 10K}

© 2020 CEVA

DDR size reduction – Preliminary results

12

• The numbers shown herein are a result of preliminary optimization
effort and there is a need for further work and testing to confirm the
results

• This optimization has improved also the L2 utilization

• A significant number of networks can now fit entirely into L2

• 66% of tested networks now fit entirely into a 2MB L2
(previously 13%)

• 83% of tested networks now fit entirely into a 4MB L2
(previously 38%)

• This Buffer size reduction method is performed on L2 memory as
well
L2 Size

Amount of networks
(in percentages)

Before optimization:

Amount of networks
(in percentages)

After optimization:

2MB 13% 66%

4MB 38% 83%

© 2020 CEVA

Merge Buffers Optimization Improvements

13

1

2

3

4

5

6

800K

700K

600K

600K

500K

7

8

200KC

A

A

B

A

B

A

B200K

200K

• Overview

• This optimization takes advantage of the fact that in many convolutional
networks the size of buffers decreases after the first few layers

• Thus, a buffer which might need to be large at the beginning (for example: 800K),
often becomes very small towards the end of the network (for example: 200K)

• In this example (see diagram) the algorithm allocates 800K (The Maximum of
Buffer A) + 700K (The Maximum of Buffer B) + 200K (The Maximum of Buffer C) =
1.7MB

• The improved algorithm will allocate buffer C (200K) inside buffer A, since after
layer-5 the size of buffer A is 500K

Buffer A 800K

Buffer A 500K Buffer C 200K

© 2020 CEVA

Merge Buffers Optimization Improvements

14

• Overview

• This optimization phase reduces even further the amount of external memory
allocated in most of our supported networks

Buffer A
500K

Buffer C 200K

1

2

3

4

5

6

800K

700K

600K

600K

500K

7

8

200KC

A

A

B

A

B

A

B200K

200K

Network Reduced by (in percentages)

Mobilenet_SSD (TensorFlowLite) 35%

Yolo_V3 (Caffe) 28%

Inception_V3 (TensorFlow) 15%

OpenPose_Coco (Caffe) 15%

© 2020 CEVA

Summary and results – Classification networks

15

Network DDR size reduction in % L2 – 4MB BW L2 BW Improvement in %

Alexnet -100% All in L2 100%

Inception v3 -100% All in L2 100%

Inception v4 -66.67% All in L2 100%

Resnet-50 -28.56% All in L2 100%

Resnet-18 -68.24% All in L2 100%

VGG16 -91.66% All in L2 100%

MobileNetV1 -100% All in L2 100%

MobileNetV2 -100% All in L2 100%

MobileNetV3 -90.27% All in L2 100%

Dense-Net121 -16.15% - -

ShuffleNet -100% All in L2 100%

© 2020 CEVA

Summary and results – Detection
networks

16

Network DDR size reduction in % L2 – 4MB BW L2 BW Improvement in %

MobileNet-ssd -100% All in L2 100%

MTCNN onet -100% All in L2 100%

MTCNN pnet -100% All in L2 100%

MTCNN rnet -100% All in L2 100%

FRCNN -84.75% Partially in L2 53.95%

Yolov2 -77.87% All in L2 100%

Yolov3 -62.50% Partially in L2 101.53%

© 2020 CEVA

Summary and results – Segmentation & RNN networks

17

Network DDR size reduction in % L2 – 4MB BW L2 BW Improvement in %

Enet -69.12% Partially in L2 -

SegNet -71.45% Partially in L2 109.35%

ERFNet -89.20% - -

Deeplabv3 -56.95% - -

UNet -66.31% Partially in L2 -

ICNet -81.89% Partially in L2 -

FSRCNN -50.00% All in L2 100%

OpenPose -93.75% All in L2 100%

LSID -59.36% - -

Deepspeech1 -100% All in L2 100%

Deepspeech2 - - -

© 2020 CEVA

Summary and conclusions

18

• We introduced CEVA SensPro and NeuPro-S processors for AI
and CV applications.

• These cores are complemented by CDNN, a highly optimized
graph compiler and runtime framework.

• We have shown the results of an effort conducted at CEVA to
improve network buffer allocation and reduce DDR BW.

• At the same time, the L2 BW has increased significantly,
thereby allowing many networks data to reside entirely in L2
memory.

• Further testing has confirmed the initial results.

© 2020 CEVA

Thank you

www.ceva-dsp.com

