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Executive Summary
Abstract

Efficient edge
computing is the
foundation underlying
Al and computer vision
applicationsin
autonomous vehicles,
cameras, drones and
many other
applications

Because deep neural
networks (DNNs) are
memory and compute
intensive, creating
efficient
implementations of
DNNs requires frugal
use of memory and
memory bandwidth,
along with computing
power

In this talk, we’ll
present CEVA’s novel
approach to enable

efficient memory
allocation to enable
implementing DNNs
under strict size and

power constraints

Our approach utilizes a
unified computational
graph and takes into
account the differing
characteristics of
different classes of
memory (on-chip L1
and L2 SRAM and
external DDR)

We will also introduce
CEVA-XM6 and CEVA
SensPro processors for
vision and Al

CEVA
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CEVA SensPro Vision and Al processor
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CEVA NeuPro-S Vision and Al processor
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Offline Training Offline Optimization

CDNN

Caffe Compiler

TensorFlow

Image
Datab i
atabase Real-time Inference

“Young girl with CDNN Usage

long hair
riding a bicycle, Flow

F : 2 S Enan: withacatin
Caffe @ ONNX = £) . a front basket”
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Computational graph vist N

* A neural network can be described by a computational graph
* The computational graph is a directed graph that has two types of nodes: data nodes and operation nodes

* Adirected edge from a data node to an operation node means that the operation takes the data as its input, while a
directed edge from an operation node to a data node means that the operation produces the data as its output

Figure 1. An example computational graph: Squares denote tensor data (E: external, C: constant, V: variable,
T: regular tensor), ellipses denote operations

\ /e
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L 800K

* Given a computational ¢ Minimize overall * L1 and L2 memories are
graph G with vertices network memory fast but small in size 300K
and edges (V,E) consumption (typically
1MB — 4MB
* |Input: G=(V,E) * Maximize on-chip L1 ) 1000K
and L2 SRAM BW
* Each node might have
: . 400K 200K
several input and * Minimize external DDR
output buffers BW
100K 500K

* Each buffer size is
determined by the
operation size

20K

\ /e
CEVA |



Memory allocation algorithm (2/3)
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* Switch to a new graph in which the buffers are the nodes

* The 0-1 knapsack problem:

* Given n items with weights w; and costs p;

1, itemiis chosen

* Let the indicator function be: x; = {O otherwise

* Need to find a vector x which satisfies

n
(1) maxzpixi
a
n

(2) z wix; <W  Where Wis maximum
i=1 weight capacity

CEVA

400K 200K

100K 500K

20K
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Memory allocation algorithm (3/3) \S/d%lmll’t\

* Graph G = (V,E) where each node holds a price p;
 We want find a solution which maximizes L2 BW and minimizes the Total Cost

* Let the indicator function be: x; = L, itemits ci'zosen BN 500K
0, otherwise
* Need to find a vector x which satisfies: v
n B 1000K
(D maxz p;x; = L2 BW
X
i=1
& 400K 200K
(2) Total Cost = Z wix; <W
i=1
* Can be solved using dynamic programming 100K 500K
* Time complexity: O(nW)
* Space complexity: O (nW)
20K

\ /P
CEVA 9
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* Allocate buffer id for each layer.

Then take the maximum size for each buffer. The total external memory allocated
would be (where n is maximum number of buffers used in parallel)

n
Z max(K. size)
k=1

* In this example, n equals to 3, and the total memory would be:
1000K + 800K + 700K = 2500K

C E V7.%
VA © 2020 CEVA 10
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Optimization methods VISI N
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* Note that the way the algorithm assigns buffer id to each layer
may affect the result
* In this example (highlighted) you’ll notice that swapping at the

“branch point” between buffers B and C can save
around 690K

Old MAX = 2.5MB

{1000K, 800K, 700K} ' 1000K B
New MAX=1.81MB
{1000K, 800K, 10K} 600K A

\ /e
CEVA :
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DDR size reduction — Preliminary results VIS N
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e The numbers shown herein are a result of preliminary optimization
effort and there is a need for further work and testing to confirm the
results

* This optimization has improved also the L2 utilization
* Asignificant number of networks can now fit entirely into L2

* 66% of tested networks now fit entirely into a 2MB L2
(previously 13%)

* 83% of tested networks now fit entirely into a 4MB L2
(previously 38%)

* This Buffer size reduction method is performed on L2 memory as

Amount of networks Amount of networks
(in percentages) (in percentages)
Before optimization: After optimization:

\ /e
CEVA :
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Merge Buffers Optimization Improvements VIS N
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e Qverview

* This optimization takes advantage of the fact that in many convolutional
networks the size of buffers decreases after the first few layers

* Thus, a buffer which might need to be large at the beginning (for example: 800K),
often becomes very small towards the end of the network (for example: 200K)

* In this example (see diagram) the algorithm allocates 800K (The Maximum of

Buffer A) + 700K (The Maximum of Buffer B) + 200K (The Maximum of Buffer C) =
1.7MB

* The improved algorithm will allocate buffer C (200K) inside buffer A, since after
layer-5 the size of buffer A is 500K

—~ 200K

Buffer A 500K Buffer C 200K

CEVA ? :
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Merge Buffers Optimization Improvements VISI N
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e Qverview

* This optimization phase reduces even further the amount of external memory
allocated in most of our supported networks

Network Reduced by (in percentages)

Mobilenet_SSD (TensorFlowlLite) 35%
Yolo_v3 (Caffe) %%
\nception_V3 (TensorFlow) 5%
OpenPose_Coco (Caffe) 5%

Buffer A

500K Buffer C 200K

\ /e
CEVA m
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Summary and results — Classification networks VIS N
summit
Network DDR size reduction in % L2 -4MB BW L2 BW Improvement in %
Alexnet -100% All'in L2 100%
nceptonvd 00% Alint2 00%
nceptionva  e667% Alint2 00%
‘Resnetso  2856% Alint2 00%
Resnet18  e824% . Alin2 00%
vees  oLee% Alint2 00%
MobileNetvi 00% Alint2 00%
MobileNetv2 00% Alint2 00%
‘MobileNetv3  ©027% . Alin2 00%
DemseNeti2z2  161s% - -
shuffleNet 00% Alint2 00%

\ /e
CEVA 15



Summary-and results — Detection vikgalddﬁ
networks summit
DDR size reduction in % L2 -4MB BW L2 BW Improvement in %

MobileNet-ssd -100% Allin L2 100%

wowwenet w0 Mz o
e o Mz oo
owme w0 Mz o
won % eamaye o
o2 e Mz o
eea  esw pamayine s
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Summary and results — Segmentation & RNN networks VIS N
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Network DDR size reduction in % L2 -4MB BW L2 BW Improvement in %
Enet -69.12% Partially in L2 -
‘SegNet  7145% Partiallyinl2  10035%
CERFNet  g920% - -
Deeplabvd  5695% - -
UNet ee3% Partiallyint2 -
CNet  8189% Partiallyinl2 -
FRONN s000% Alint2 00%
‘OpenPose  9375% Alint2 00%
S s93e% - -
Deepspeech1 a00% Alinl2 00%
Deepspeech2 - - -

\ /e
CEVA :
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Summary and conclusions VISI N

summit

 We introduced CEVA SensPro and NeuPro-S processors for Al
and CV applications.

* These cores are complemented by CDNN, a highly optimized
graph compiler and runtime framework.

 We have shown the results of an effort conducted at CEVA to
improve network buffer allocation and reduce DDR BW.

* At the same time, the L2 BW has increased significantly,
thereby allowing many networks data to reside entirely in L2
memory.

* Further testing has confirmed the initial results.

Vsac
CEVA 18
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