

Designing Cameras to Detect the "Invisible": Handling Edge Cases Without Supervision

Dr. Felix Heide CTO & Co-Founder September 2020

Algolux – Robust Perception for All Conditions

- Al software company based in in Montreal, with offices in Palo Alto and Munich
- 75+ employees primarily in Montreal with over 85% in R&D
- Significant industry and academic recognition

Today's Vision Systems Fail in Edge Cases

Typical Imaging Stack

Typical Imaging Stack

Typical Imaging Stack

Today's Best Practices

Jointly Learn Perception, Image Processing and Sensing

Algolux Eos Embedded Perception Software

EosTraining Directly **from RAW**

- Simulates RGB to RAW for generic data
- Transforms arbitrary sensor raw to target raw
- Domain adaptation for clear well-illuminated images to suboptimal images

EosUnsupervised Learning in RAW

We leverage vast amounts of unlabeled data by intensive contrastive learning in the RAW domain.

EosSelf-Supervised Learning **in RAW**

We jointly train Monocular Depth Estimation and motion models from **unlabeled videos in RAW**

Unlabeled Video Frames

- Given an input frame I_t and nearby frames I_{t-1} , I_{t+1} , a convolutional network produces a depth map from I_t , a second network estimates camera poses relative to I_{t-1} and I_{t+1}
- All losses defined in the RAW domain instead for post-ISP.

Depth and Camera Pose Estimation Networks

Training using consistency between Depth Map and Camera Pose Estimations

Perception Stack

Eos Perception Portfolio

© 2020 Algolux

Eos Perception Baseline Features

Sensor Interface & Signal Processing

Eos Inference Engine

© 2020 Algolux 15

Eos L2+ Stack for Camera and Radar Perception

Eos L4 Stack for Multi-Sensor Fusion

Evaluations

Qualitative Object Detection Examples

Snow Fall

Low Light & Glare from Dirty Windshield

Foggy Night

Best Performance in Harsh Conditions

Training Data

Algolux dataset with a mix of easy and challenging lighting and weather scenarios

Validation/Test Data

See Dataset specs later in the slides.

Eos Pedestrian DetectionWide-Angle Low-Light

Eos Surround ViewWide-angle Rearview – Dusk / Mud

Eos Free Space DetectionHarsh Conditions

Eos Traffic Light State DetectionEvening Rainy Conditions

© 2020 Algolux

Eos vs. Tesla Autopilot

Eos vs. Tesla Autopilot

Eos vs. Nvidia Driveworks Object Detection – AR 0231

Object Detection – Next-Gen Sensors AT820

28

Low-Contrast Measurements in Bad Weather

Eos vs. Nvidia Drivenet 2.2 Object Detection – Night and Snow

Eos vs. Nvidia Drivenet – Object Detection Small Objects down to 10pix width

Key Takeaways

- Current vision systems are designed to fail in edge cases
- Domain adaptation and unsupervised end-to-end learning from RAW to detections is required to address robustness issues
- Significantly outperforms the industry for perception robustness and scalability

Resources

To learn more about Eos, visit https://algolux.com/solutions/eos-embedded-perception/

To learn more about the research behind the technology, visit https://algolux.com/research/

Visit us at the Algolux and Intel Virtual Booths and www.algolux.com

