Edge Inferencing-Scaling with Intel® Vision Accelerator Design Cards

Rama Karamsetty
Edge.AI-IOTG
Intel Corporation
September 2020
Notice and Disclaimers

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service
activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your
system manufacturer or retailer or learn more at www.intel.com.

This document contains information on products, services and/or processes in development. All information provided here is subject to
change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and
brands may be claimed as the property of others.
Agenda

- Intel’s Edge AI journey
- Applications & Use cases
- Intel® Vision Accelerator Design Cards
- Intel Ecosystem
- Partner Journey, Challenges, Solutions
- Conclusion
One Size fits all- A Myth
Reach of Accelerator Cards – Does one size fit all?

Drivers for Edge:
- Latency
- Bandwidth
- Security
- Connectivity

Devices • Things
Transportation • Retail • Public Sector • Logistics • Smart Cities

Edge Compute Node

Network Hub or Regional Data Center

Core Network

Cloud Data Center

Video • Healthcare • Manufacturing Smart Buildings • Energy

Device /Things Based Edge Inferencing

Edge Compute Node Based Inferencing

Cloud Edge or Data Center Edge or CDN Edge Based Inferencing

OpenVINO
Industry/Applications for Edge Inference Cards

Across Many Industries...

Video Smart Cities Retail Robotics Industrial Healthcare

And Many Devices/Applications...

<table>
<thead>
<tr>
<th>Edge devices</th>
<th>Edge servers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(NVR, Robotics, AI Boxes...)</td>
<td>Video, VA/AI servers, CDN</td>
</tr>
</tbody>
</table>

©2020 Intel
Common DL Imaging/Vision Use Cases in Edge Segments

- Intelligent Traffic Monitoring
- Anomaly Detection
- Anonymous Analytics
- License Plate Recognition
- Perimeter Protection

- Object Detection, Tracking
- Real-Time Analytics
- People Movement
- Thermal Mapping
Intel® Vision Accelerator Design Cards
Intel® Vision Accelerator Design cards—Description

- IVAD cards-Specialized cards designed with one or more Vision Processing Units (VPUs) to deliver high-performance machine vision at ultra-low power.

- Small Form Factors-PCIe, M.2, mPCIe connectivity based pre-validated edge inference engines for size constrained systems

- Plug into any existing Intel Architecture based Host ecosystem solution

- Help offload encode, detection, recognition on to the accelerator card
Intel® Vision Accelerator Design cards value

- Flexible and Scalable options
 - Low, Med and High-performance options
 - Scalable price points

- Relative lower power consumption

- Long Life Support w/ 24/7 usage

- OpenVINO™ supported
 - Application portability and forward/backward compatibility

- Lower System level TCO
Glimpse of Ecosystem products

<table>
<thead>
<tr>
<th>Example card based on Vision Accelerator Designs</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x1 VPU</td>
<td>x2 VPUs</td>
<td>x4 VPUs</td>
<td>x8 VPUs</td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td>mPCle, M.2</td>
<td>mPCle**, M.2</td>
<td>PCIe x4, PCIe x2, M.2</td>
<td>PCIe x4</td>
</tr>
<tr>
<td>Currently manufactured by*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software tools</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Other names and brands may be claimed as the property of others

Intel® Distribution of OpenVINO™ Toolkit
Develop NN Model; Deploy across Intel® CPU, GPU, VPU, FPGA; Leverage common algorithms
50/100/150 CAMERA STREAMS W/ DELL POWEREDGE SYSTEM

OBJECT TRACKING

PEOPLE MOVEMENT

Intel® Components

- Intel® Xeon™ Processor
- x2, x3, x4 ‘Gen 1 Intel® Movidius™ Myriad™ X VPU Based x8 IVAD’
- Intel® Distribution of OpenVINO™ toolkit
Story of an ISV -- AXXONSOFT

Key challenge was to apply neural network detection/classification to 50, 100 and 150 camera streams’ images with the same scalable system design, and no rework in partner application and still be within overall power envelope.

- 640x360 pixel color images captured @ 25 fps and encoded in H.264 format from 50 cameras, 100 cameras and 150 cameras

- Realtime inferencing need: Application ‘tags and boxes’ areas of interest and displays meta-data onscreen for live viewing, for remote viewing and for local storage

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>SETTINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input video stream</td>
<td>640x360 @ 25 fps</td>
</tr>
<tr>
<td>Number of input channels</td>
<td>50</td>
</tr>
<tr>
<td>(potential camera feeds)</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>150</td>
</tr>
<tr>
<td>Neural NW processing</td>
<td>5 fps</td>
</tr>
<tr>
<td>framerate</td>
<td></td>
</tr>
<tr>
<td>Number of active neural NW</td>
<td>50</td>
</tr>
<tr>
<td>channels</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>150</td>
</tr>
<tr>
<td>Video archive</td>
<td>Raid 5, 65 TB</td>
</tr>
<tr>
<td>Number of archiving streams</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>150</td>
</tr>
</tbody>
</table>
Story of an ISV -- AXXONSOFT

<table>
<thead>
<tr>
<th>NUMBER OF VIDEO CHANNELS AND PROCESSING FRAME RATE</th>
<th>FRAME RATE (FPS) (PROCESSED)</th>
<th>TEMPERATURE HDDL NODES (DEGREES C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5 fps inference per channel)</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>150 channels</td>
<td>748</td>
<td>750</td>
</tr>
<tr>
<td>100 channels</td>
<td>499</td>
<td>499</td>
</tr>
<tr>
<td>50 channels</td>
<td>248</td>
<td>250</td>
</tr>
</tbody>
</table>
Story of an OEM

Shopper Engagement occupancy, shelf inventory

Covid-19 occupancy, social distancing solution

Curbside Wait time

Intel® Components

- Intel® Atom™, Core™, Xeon™ Processors
- x1 M.2, x2 PCIe ‘Gen 1 Intel® Movidius™ Myriad™ X VPU Based IVAD Card’
- Intel® Distribution of OpenVINO™ toolkit

©2020 Intel
Story of an OEM

- Technical challenges
 - Scalable compute w/o software rework to move up/down performance stack.
 - Heterogenous compute needed with different workloads for normal operations vs inferencing pipeline.
 - Decode, Tracking and Encode are better done on CPU.
 - Pre-processing and Inferencing are better handled by VPUs.
- Intel IVADs allow for workloads to be split amongst CPU, VPU compute resources without any application level re-programming.
 - Application level re-programming for workload optimization between compute engines is not scalable.
 - IVADs w/ IA hosts allow for scalability of different use cases just by adding more IVAD cards with no application level reprogramming.
“The retail industry continues to evolve, and our collaboration with Intel will help us take on the industry’s biggest challenges,” said Subramanian Kunchithapatham, vice president, Engineering, Sensormatic Solutions. “The collaboration will allow us to deliver smart, connected and scalable solutions that allow retailers to gain real-time insights into inventory, shoppers, associates and the retail environment throughout the entire customer journey.”

Reach of Accelerator Cards – Does one size Fit all?

Drivers for Edge:
- Latency
- Bandwidth
- Security
- Connectivity

Devices • Things
Transportation • Retail • Public Sector • Logistics • Smart Cities

Video • Healthcare • Manufacturing Smart Buildings • Energy

Device / Things Based Edge Inferencing

Edge Compute Node

Cloud or Data Center Inferencing

Network Hub or Regional Data Center

Core Network

OpenVINO
Contact Information

Additional information
Intel® Vision Accelerator Design Cards

Additional information:
Email Rama Karamsetty
General Session Speaker:
• Bill Pearson, VP IOTG, GM Developer Enabling, Tuesday, September 15, 10:00 a.m. to 10:30 a.m. PDT: Streamline, Simplify and Solve for the Edge of the Future

In-depth technical workshops
• Friday, September 18, 9:00 a.m. to 1:30 p.m. PDT: Using the Intel® Distribution of the OpenVINO™ Toolkit for Deploying Accelerated Deep Learning Applications
• Monday, September 21, 9:00 a.m. to 1:30 p.m. PDT: Intel’s Edge AI for Retail
• Wednesday, September 23, 9:00 a.m. to 1:30 p.m. PDT: Intel’s Edge AI for Industrial

Technical presentations
• Alexander Kozlov, Deep Learning R&D engineer, Intel: Recent Advances in Post-Training Quantization
• Dr. Manas Pathak, Global AI lead for oil and gas, Intel: Acceleration of Deep Learning for 3D Seismic
• Tara K. Thimmanaik, solutions architect, Intel: Smarter Manufacturing Achieved with Intel’s Deep Learning-Based Machine Vision
• Gary Brown, Director of AI Marketing, Intel: Getting Efficient DL Inference Performance: Is It Really All About The TOPS?
• Rama Karamsetty, Edge AI Marketing Manager, Intel: Edge Inferencing-- Scaling w/ Vision Accelerator Cards
• Vaidyanathan Krishnamoorthy, edge inference solutions architect, Intel: Federated Edge Inferencing

Dedicated demos and networking space