embedded VISIMN Summit

Machine Learning for the Real World: What is Acceptable Accuracy, and How Can You Achieve It?

arm

Tim Hartley Director Product & Marketing

Arm Insight Platform

Smart Buildings

Healthcare

کی Smart Streets

Traffic Management

ML on the Edge or in the Cloud?

At or near the Edge

- Reduced round-trip latency
- Better privacy
- Reduced bandwidth costs
- Reduced cloud compute costs

In the Cloud

- Plenty of compute power
- Scalable
- Easy to deploy

In an ideal world

- We could run ML where it makes best sense to run it
 - Moving workloads from edge to cloud and back at will
 - And from edge platform to edge platform with no stickiness
 - With a wide range of edge devices created with ML acceleration capabilities

In reality

- Edge compute power varies hugely
 - ML workloads will not run across all platforms
- Varying software APIs and libraries
 - ML & CV functionality often proprietary
 - Performance-portable applications difficult to write

In an ideal world

- We could move and store media easily between edge and cloud
 - Applying ML compute on media freely captured and distributed
 - With guarantees of security for personal information

In reality

- GDPR and other privacy concerns
 - What can be captured, stored and distributed is under ever-increasing scrutiny
 - Anything that can personally identify you is coming under strict control
 - Difficult to prove system-wide security, particularly with the cloud

Compute Hierarchy: Edge to Gateway to Cloud

© 2020 Arm Ltd

A Real World Case Study

People / object detection for determining space occupancy in real time

A Real World Case Study: Real-Time Space Occupancy

- People and object detection (<u>not</u> face recognition)
- To determine real-time space occupancy
- Requirements opposite to determine
- Machine learning detection model
- And a suitable hardware platform

Key requirements

- Off-the-shelf IP cameras
- No personally identifiable information to be sent to the cloud
- Independent of viewing angle
- ~80ft detections, HD @ 50mm lens
- Low false negatives and false positives
- 1 frame every 15s minimum

Datasets and Models

Dataset candidates

Many to choose from:

- COCO, Kitti, Open Images, etc.
- Selected COCO for now
- Good range of classes and models
- And a high image count in the classes we cared most about

Model candidates

A good selection of COCO-trained models

- ranked using a "COCO mAP[^1]" metric
- and by execution time

These are excellent starting points

• Downloadable and usable quickly

Comparison of COCO-Trained Models

Comparison of Detection Performance

SSD_MOBILENET_V2_COCO

FASTER_RCNN_RESNET101_COCO

Tuning the Model Using Transfer Learning

arm

brightness, quality

variations

Crop & create rotated,

Feed through training pipeline using existing network Repeat for each image

Pre-trained model based on FasterRCNN & ResNet101

After Tuning (1 of 4)

Before

arm

After

After Tuning (2 of 4)

Before

arm

After

© 2020 Arm Ltd

After Tuning (3 of 4)

Before

arm

After

After Tuning (4 of 4)

Before

arm

After

© 2020 Arm Ltd

Transfer Learning: Reducing the Corner Cases

Before

arm

After

© 2020 Arm Ltd

Impact of Transfer Learning

Execution time (ms on desktop GPU) 0

MASK_RCNN_RESNET50_ATROUS_COCO MASK_RCNN_RESNET101_ATROUS_COCO MASK_RCNN_INCEPTION_V2_COCO MASK_RCNN_INCEPTION_RESNET_V2_ATROUS_COCO FASTER_RCNN_NAS

FASTER_RCNN_INCEPTION_RESNET_V2_ATROUS_COCO

FASTER_RCNN_RESNET101_COCO

RFCN_RESNET101_COCO FASTER_RCNN_RESNET50_COCO FASTER_RCNN_INCEPTION_V2_COCO SSD_INCEPTION_V2_COCO SSDLITE_MOBILENET_V2_COCO SSD_MOBILENET_V2_QUANTIZED_COCO SSD_MOBILENET_V2_COCO SSD_RESNET_50_FPN_COCO SSD_MOBILENET_V1_FPN_COCO SSD_MOBILENET_V1_PPN_COCO SSD_MOBILENET_V1_PPN_COCO SSD_MOBILENET_V1_O.75_DEPTH_QUANTIZED_COCO SSD_MOBILENET_V1_0.75_DEPTH_COCO

SSD_MOBILENET_V1_COCO
Detection quality (COCO mAP[^1]) 15

Product Implications of Tuned Networks

The retraining process

- Additional training takes ~2 hours
 - Using around 250 images
 - On a portable training rig
- Pipeline allows for tuning to support...
 - corner cases
 - lower quality cameras
 - difficult lighting conditions

Product considerations

- Significantly reduce false +ve & ve
- Allows for tuning to specific venues
 - e.g. customising for specific desk and chair types
 - Training pipeline relatively painless compared to retraining the entire model
 - Implies more skilled installation labor

© 2020 Arm Ltd

Applying to the Real-World

Working with cameras

"Everything matters..."

- Model choice key to quality
- Quality of lens and sensor, resolution
- Sharpness, noise, compression
- Lighting & lighting variability

Real-world product implications

Installation / configuration

- Complex and skilled, unless...
 - Can we mitigate low quality devices by training with degraded images?
 - Use AI to automate camera setup?
- Camera cost vs features
 - e.g. HDR expensive but can help with variable lighting

Choice of model fundamental to successful real-world vision-based use cases	 As is everything else ⁽ⁱ⁾ Model tuning can provide significant benefits
Useful models often need significant compute	 Today's off-the-shelf cameras unlikely to have sufficient capability Aggregating multiple devices into gateways can work well, and this creates real opportunities today
Compute requirement will grow, enabling new use cases	 More sophisticated models as ML continues to evolve Edge-based complex action recognition is particularly challenging

Useful Resources

Useful Links

COCO dataset

http://cocodataset.org/

COCO-trained models

https://github.com/tensorflow/models/blob/master/research /object_detection/g3doc/tf2_detection_zoo.md

Arm Insight Platform

https://www.arm.com/products/arm-insight-platform

2020 Embedded Vision Summit

Machine Learning for the Real World: What is Acceptable Accuracy, and How Can You Achieve It?

Tim Hartley

Trademark and copyright statement The trademarks featured in this presentation are registered and/or unregistered trademarks of Arm (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

Copyright © 2020

Thank You!