Recent Advances in Post-training Quantization

embedded VISIMN Summit

Alexander Kozlov Intel Corporation September 2020

Software

Introduction

Deep Learning (DL) models optimization trends

- Optimization by design
 - Lightweight building blocks
 - Neural Architecture Search (NAS)
- Optimization of existing SOTA models
 - Optimization with fine-tuning (e.g. QAT)
 - Post-training methods (e.g. post-training quantization)

https://arxiv.org/pdf/1905.11946v3.pdf

Quantization in DL

- Simplest and fastest way to speed up the model inference
- Can be used both with fine-tuning and post-training ٠
- The idea is to approximate FP32 operations with integer analogs:

 $Y = W_{f32}X_{f32} \approx s_w W_{i8}s_x X_{i8} = s_w s_x (W_{i8}X_{i8})$

- INT8 quantization is a mainstream method ۲
- INT4: ۲
 - Accurate model is accessible via QAT
 - Currently passing frontier in post-training

Asymmetric INT8 quantization

embedded

Post-training quantization implementation

INT8 quantization implemented in almost any framework:

- Training:
 - TensorFlow Quantization-Aware Training
 - PyTorch
 - MXNet
- Inference:
 - Microsoft ONNX Runtime
 - Nvidia TensorRT
 - Intel OpenVINO

Recent advances in post-training quantization

embedded VISION Summit

- Channel alignment: <u>https://arxiv.org/abs/1902.01917</u>
- Bias correction and variance correction: <u>https://arxiv.org/pdf/1810.05723</u>
- Outliers channel splitting: https://arxiv.org/abs/1901.09504
- Global optimization of quantization parameters: https://arxiv.org/pdf/1911.07190
- "Data-free" quantization: https://arxiv.org/abs/1906.04721

What we tried for INT8

- Channel alignment: for Conv->Conv pattern
- Bias correction and variance correction
 - Honest and fast bias correction
 - Variance correction: does not help in general for INT8
- Outliers channel splitting: tiny gain in case of INT8
- Global optimization (TPE, genetic algorithms): make sense for some topologies
- "Data-free" quantization: performs worse than statistics based methods

Default method for INT8 post-training quantization*:

- Symmetric per-channel weights
- Per-channel activations whenever it is possible, can be symmetric or asymmetric
- Activation Channel alignment (conv->conv pattern)
- Statistics based initialization:
 - 300 samples
 - Scales for weights are initialized by $m_{i}ax(abs(w_{i}))$
 - For activations mean $\max_{i}(abs(a_i))$, where j is sample number
- Bias correction

*Validated on 100+ DL models

Accuracy-aware quantization

- Revert layers back to FP32 after default quantization if low accuracy
- Layers ranking criterion:
 - KL-divergence
 - SQNR
 - Other metrics
- The best way is to get per-layer contribution to the target metric drop
- Problem: how to get maximal subgraph when reverting to FP32 to avoid performance drop due to precision conversion (INT8->FP32 and back)?

Hardware specific

- Mixed precision
 - FP32/INT8, FP16/INT8, etc.
 - Efficiency (general-purpose HW can use it more efficiently)
- Quantization schemes
 - Per-tensor/per-channel parameters
 - Symmetric/asymmetric quantization
- Instruction set specifics (e.g. saturation)

Results

© 2020 Intel Corporation

Results

Model name	Framework	Dataset	FP32 accuracy	INT8 accuracy	Accuracy Drop	Speed up
MobileNet-v2	Caffe	ImageNet	0.7181	0.71518	0.00292	3.46x
MobileNet v1	TF	ImageNet	0.71848	0.71284	0.00564	3.49x
SE-ResNet-50	Caffe	ImageNet	0.77598	0.77398	0.002	4.76x
SqueezeNet v1.1	Caffe	ImageNet	0.58384	0.57668	0.00716	3.16x
SSD-MobileNet	Caffe	VOC2012	0.231664	0.229522	-0.003528	3.42x
SSDLite-MobileNet-v2	TF	COCO	0.241497	0.240297	0.0012	2.5x
SSD-ResNet-34 1200	MXNet	COCO	0.198346	0.197137	0.001209	3.34x
Faster R-CNN ResNet-50	TF	COCO	0.298975	0.296356	0.002619	3.24x
Facenet Inception ResNet v1	TF	CASIA-WebFace	0.988695	0.988547	0.000148	3.16x
Deeplab v3	TF	VOC 2012	0.630643	0.625723	0.00492	2.52x
Brain-tumor-segmentation	MXNet	BraTS	0.923999	0.922889	0.00111	1.38x

*All models were obtained with INT8 post-training quantization algorithm within this <u>toolkit</u> **Accuracy and performance numbers were measured on Intel® Xeon® Gold 8270 Processor

© 2020 Intel Corporation

Key learnings

- Use more granular quantization scales as much as possible; e.g., per-channel (output) scales for conv filters, per-channel activations in Depth-wise convolution, etc.
- Make the model output unbiased (bias correction)
- Handle zero filters
- Mixed mode is preferable for CPU (symmetric weights/asymmetric activations)
- INT4 requires asymmetric quantization to get accurate models (even with fine-tuning)
- Mixed precision with automatic bit-width selection is the future

Resources

OpenVINO

OpenVINO Toolkit

https://docs.openvinotoolkit.org/

Post-training Optimization Toolkit

https://docs.openvinotoolkit.org/latest/ R EADME.html

Blog post on low-precision

https://www.intel.ai/open-vino-lowprecision-pipeline **Quantization-aware training** NNCF paper with code for PyTorch

https://arxiv.org/abs/2002.08679v2

2020 Embedded Vision Summit

"Advanced Workshop on Intel® Vision Technology and OpenVINO™ Toolkit"

