
1

Lessons of last 50 years of Computer Architecture

1. Raising the hardware/software interface creates
opportunities for architecture innovation
○ e.g., C, Python, TensorFlow, PyTorch

2. Ultimately benchmarks and the marketplace
settles architecture debates
○ e.g., SPEC, TPC, MLPerf, ...

2

Instruction Set Architecture?
• Software talks to hardware using a vocabulary

– Words called instructions
– Vocabulary called

instruction set architecture
(ISA)

• Most important interface since
determines software that can run on hardware
– Software is distributed as instructions

33

IBM Compatibility Problem in Early 1960s
By early 1960’s, IBM had 4 incompatible lines of computers!
701➡ 7094
650➡ 7074
702➡ 7080
1401 ➡ 7010

Each system had its own:
▪ Instruction set architecture (ISA)
▪ I/O system and Secondary Storage:
 magnetic tapes, drums and disks
▪ Assemblers, compilers, libraries,...
▪ Market niche: business, scientific, real time, ...

 IBM System/360 – one ISA to rule them all
4

Control versus Datapath
▪ Processor designs split between datapath, where numbers are stored and
arithmetic operations computed, and control, which sequences operations on
datapath
▪ Biggest challenge for computer designers was getting control correct

▪ Maurice Wilkes invented the
idea of microprogramming to
design the control unit of a
processor*

▪ Logic expensive vs. ROM or RAM

▪ ROM cheaper and faster than RAM

▪ Control design now programming

5
* "Micro-programming and the design of the control circuits in an electronic digital computer,"
M. Wilkes, and J. Stringer. Mathematical Proc. of the Cambridge Philosophical Society, Vol. 49, 1953.

https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/papers/wilkes52.pdf

Microprogramming in IBM 360
Model M30 M40 M50 M65
Datapath width 8 bits 16 bits 32 bits 64 bits

Microcode size 4k x 50 4k x 52 2.75k x 85 2.75k x 87

Clock cycle time (ROM) 750 ns 625 ns 500 ns 200 ns

Main memory cycle time 1500 ns 2500 ns 2000 ns 750 ns
Price (1964 $) $192,000 $216,000 $460,000 $1,080,000

Price (2018 $) $1,560,000 $1,760,000 $3,720,000 $8,720,000

6Fred Brooks, Jr.

IC Technology, Microcode, and CISC
▪ Logic, RAM, ROM all implemented using same transistors
▪ Semiconductor RAM ≈ same speed as ROM
▪ With Moore’s Law, memory for control store could grow
▪ Since RAM, easier to fix microcode bugs
▪ Allowed more complicated ISAs (CISC)
▪ Minicomputer (TTL server) example:

-Digital Equipment Corp. (DEC)
-VAX ISA in 1977

▪ 5K x 96b microcode

7

Microprocessor Evolution
▪ Rapid progress in 1970s, fueled by advances in MOS technology,

imitated minicomputers and mainframe ISAs
▪ “Microprocessor Wars”: compete by adding instructions (easy for microcode),

justified given assembly language programming
▪ Intel iAPX 432: Most ambitious 1970s micro, started in 1975

▪ 32-bit capability-based, object-oriented architecture, custom OS written in Ada
▪ Severe performance, complexity (multiple chips), and usability problems; announced 1981

▪ Intel 8086 (1978, 8MHz, 29,000 transistors)
▪ “Stopgap” 16-bit processor, 52 weeks to new chip
▪ ISA architected in 3 weeks (10 person weeks) assembly-compatible with 8 bit 8080

▪ IBM PC 1981 picks Intel 8088 for 8-bit bus (and Motorola 68000 was late)

8

▪ Estimated PC sales: 250,000
▪ Actual PC sales: 100,000,000 ⇒ 8086 “overnight” success
▪ Binary compatibility of PC software ⇒ bright future for 8086

Analyzing Microcoded Machines 1980s
▪ HW/SW interface rises from assembly to HLL programming
▪ Compilers now source of measurements

▪ John Cocke group at IBM
▪ Worked on a simple pipelined processor, 801 minicomputer

(ECL server), and advanced compilers inside IBM
▪ Ported their compiler to IBM 370, only used

simple register-register and load/store instructions (similar to 801)
▪ Up to 3X faster than existing compilers that used full 370 ISA!

▪ Emer and Clark at DEC in early 1980s*
▪ Found VAX 11/780 average clock cycles per instruction (CPI) = 10!
▪ Found 20% of VAX ISA ⇒ 60% of microcode, but only 0.2% of execution time!

9

* "A Characterization of Processor Performance in the VAX-11/780," J. Emer and D.Clark, ISCA, 1984.

John Cocke

https://www.cs.auckland.ac.nz/courses/compsci703s1c/archive/2007/resources/EmerClark.pdf

From CISC to RISC
▪ Use RAM for instruction cache of user-visible instructions
▪ Software concept: Compiler vs. Interpreter
▪ Contents of fast instruction memory change to what application needs now
 vs. ISA interpreter

▪ Use simple ISA
▪ Instructions as simple as microinstructions, but not as wide
▪ Enable pipelined implementations
▪ Compiled code only used a few CISC instructions anyways

▪ Chaitin’s register allocation scheme* benefits load-store ISAs

10
*Chaitin, Gregory J., et al. "Register allocation via coloring." Computer languages 6.1 (1981), 47-57.

http://web.eecs.umich.edu/~mahlke/courses/583f12/reading/chaitin82.pdf

Berkeley and Stanford RISC Chips

11

Fitzpatrick, Daniel, John Foderaro,
Manolis Katevenis, Howard Landman,
David Patterson, James Peek, Zvi
Peshkess, Carlo Séquin, Robert
Sherburne, and Korbin Van Dyke. "A
RISCy approach to VLSI." ACM
SIGARCH Computer Architecture News
10, no. 1 (1982)

Hennessy, John, Norman Jouppi, Steven
Przybylski, Christopher Rowen, Thomas
Gross, Forest Baskett, and John Gill.
"MIPS: A microprocessor architecture." In
ACM SIGMICRO Newsletter, vol. 13, no.
4, (1982).

https://dl.acm.org/citation.cfm?id=859524
https://dl.acm.org/citation.cfm?id=859524
https://www.researchgate.net/profile/Norman_Jouppi/publication/234795328_MIPS_A_microprocessor_architecture/links/00b495185e2fb79958000000/MIPS-A-microprocessor-architecture.pdf

Reduced Instruction Set Computer?

• Reduced Instruction Set Computer (RISC)
vocabulary uses simple words (instructions)

• RISC reads 25% more
instructions since simple vs.
Complex Instruction Set
Computer (CISC)
e.g., Intel 80x86

• But RISC reads them 5 times faster
• Net is 4 times faster

1212

▪ CISC executes fewer instructions /
program (≈ 3/4X instructions)
but many more clock cycles per
instruction (≈ 6X CPI)

⇒ RISC ≈ 4X faster than CISC
“Performance from architecture: comparing a RISC
and a CISC with similar hardware organization,”
Dileep Bhandarkar and Douglas Clark, Proc.
Symposium, ASPLOS, 1991.

Time = Instructions Clock cycles __Time___
 Program Program * Instruction * Clock cycle

“Iron Law” of Processor Performance: How RISC can win

13

http://www-inst.eecs.berkeley.edu/~cs252/sp17/papers/RISC-vs-CISC.pdf
http://www-inst.eecs.berkeley.edu/~cs252/sp17/papers/RISC-vs-CISC.pdf

How to Measure Performance?

14

▪ Instruction rate (MIPS, millions of instructions per second)
+ Easy to understand, bigger is better
- But can’t compare different ISAs, higher MIPS can be slower

▪ Time to run toy program (puzzle)
+ Can compare different ISAs, shorter time always faster
- But not representative of real programs

▪ Synthetic programs (Whetstone, Dhrystone)
+ Tries to match characteristics of real programs
- Compilers can remove most code, less realistic over time

▪ Benchmark suite relative to reference computer (SPEC)
+ Real programs, bigger is better, geometric mean fair
- Must update every 2-3 years to stay uptodate ⇒ organization

CISC vs. RISC Today
PC Era
▪ Hardware translates x86
instructions into internal
RISC instructions
(Compiler vs Interpreter)
▪ Then use any RISC
technique inside MPU
▪ > 350M / year !
▪ x86 ISA eventually
dominates servers as well
as desktops

PostPC Era: Client/Cloud
▪ IP in SoC vs. MPU
▪ Value die area, energy as much as
performance
▪ > 20B total / year in 2017
▪ 99% Processors today are RISC
▪ Marketplace settles debate

15

Lessons from RISC vs CISC

● Less is More
○ It’s harder to come up with simple solutions, but they accelerate progress

● Importance of the software stack vs the hardware
○ If compiler can’t generate it, who cares?

● Importance of good benchmarks
○ Hard to make progress if you can’t measure it
○ For better or for worse, benchmarks shape a field

● Take the time for a quantitative approach vs rely on intuition to
start quickly

16

Moore’s Law Slowdown in Intel Processors

17
Moore, Gordon E. "No exponential is forever: but ‘Forever’ can be delayed!"
Solid-State Circuits Conference, 2003.

15XWe’re now in the
Post Moore’s Law Era

Technology & Power: Dennard Scaling

Power consumption
based on models in
Esmaeilzadeh
[2011]. 18

Energy scaling for fixed task is better, since more and faster transistors

Power consumption
based on models in
“Dark Silicon and the
End of Multicore
Scaling,” Hadi
Esmaelizadeh, ISCA,
2011

http://www.iuma.ulpgc.es/users/nunez/clases-micros-para-com/clases-mpc-slides-links/PH%20COD%20book%20ManyCore%20SMP%20OpenMP/ISCA11%20dark%20silicon%20the%20end%20of%20manycore%20era%20gpu%20etc.pdf
http://www.iuma.ulpgc.es/users/nunez/clases-micros-para-com/clases-mpc-slides-links/PH%20COD%20book%20ManyCore%20SMP%20OpenMP/ISCA11%20dark%20silicon%20the%20end%20of%20manycore%20era%20gpu%20etc.pdf
http://www.iuma.ulpgc.es/users/nunez/clases-micros-para-com/clases-mpc-slides-links/PH%20COD%20book%20ManyCore%20SMP%20OpenMP/ISCA11%20dark%20silicon%20the%20end%20of%20manycore%20era%20gpu%20etc.pdf

End of Growth of Single Program Speed?

19

End of
the

Line?
2X /

20 yrs
(3%/yr)

RISC
2X / 1.5 yrs

(52%/yr)

CISC
2X / 3.5 yrs

(22%/yr)

End of
Dennard
Scaling

⇒
Multicore
2X / 3.5

yrs
(23%/yr)

Am-
dahl’s
Law
⇒

2X /
6 yrs

(12%/yr)

Based on SPECintCPU. Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 2018

Domain Specific Architectures (DSAs)
• Achieve higher efficiency by tailoring the architecture to

characteristics of the domain

• Not one application, but a domain of applications

• Different from strict ASIC since still runs software

20

Why DSAs Can Win (no magic)
Tailor the Architecture to the Domain
• More effective parallelism for a specific domain:

• SIMD vs. MIMD
• VLIW vs. Speculative, out-of-order

• More effective use of memory bandwidth
• User controlled versus caches

• Eliminate unneeded accuracy
• IEEE replaced by lower precision FP
• 32-64 bit integers to 8-16 bit integers

• Domain specific programming language provides path for
software

21

Deep learning is causing
a machine learning revolution

From “A New Golden Age in
Computer Architecture:
Empowering the
Machine-Learning
Revolution.” Dean, J.,
Patterson, D., & Young, C.
(2018). IEEE Micro, 38(2),
21-29.

https://ieeexplore.ieee.org/abstract/document/8259424/
https://ieeexplore.ieee.org/abstract/document/8259424/
https://ieeexplore.ieee.org/abstract/document/8259424/
https://ieeexplore.ieee.org/abstract/document/8259424/
https://ieeexplore.ieee.org/abstract/document/8259424/

Tensor Processing Unit v1 (Announced May 2016)

Google-designed chip for neural net inference

In production use for 3 years: used by billions on
search queries, for neural machine translation,
for AlphaGo match, …

A Domain-Specific Architecture for Deep Neural Networks, Jouppi,
Young, Patil, Patterson, Communications of the ACM, September 2018

TPU: High-level Chip Architecture
▪ The Matrix Unit: 65,536 (256x256) 8-bit

multiply-accumulate units

▪ 700 MHz clock rate

▪ Peak: 92T operations/second

▪ 65,536 * 2 * 700M

▪ >25X as many MACs vs GPU

▪ >100X as many MACs vs CPU

▪ 4 MiB of on-chip Accumulator memory
+ 24 MiB of on-chip Unified Buffer
(activation memory)

▪ 3.5X as much on-chip memory vs GPU

▪ 8 GiB of off-chip weight DRAM memory

24

Perf/Watt TPU vs CPU & GPU

25

83

29

Using production applications vs
contemporary CPU and GPU

 ⇒

⇒

⇒
⇒

26

Reasons for TPUv1 Success

The Launching of “1000 Chips”

● Intel acquires DSA chip companies
● Nervana: ($0.4B) August 2016
● Movidius: ($0.4B) September 2016
● MobilEye: ($15.3B) March 2017
● Habana: ($2.0B) December 2019

● Alibaba, Amazon inference chips
● >100 startups ($2B) launch on own bets

● Dataflow architecture: Graphcore, ...
● Asynchronous logic: Wave Computing, ...
● Analog computing: Mythic, …
● Wafer Scale computer: Cerebras
● Coarse-Grained Reconfigurable Arch: SambaNova, ... 27

Helen of Troy by Evelyn De Morgan

https://en.wikipedia.org/wiki/Helen_of_Troy_(painting)
https://en.wikipedia.org/wiki/Evelyn_De_Morgan

How to Measure ML Performance?

28

 Operation rate (GOPS, billions of operations per second)
 Easy to understand, bigger is better
 But peak rates not for same program
 Operations can vary between DSAs (FP vs int, 4b/8b/16b/32b)

 Time to run old DNN (MNIST, AlexNet)
 Can compare different ISAs, shorter time always faster
 But not representative of today’s DNNs

 Benchmark suite relative to reference computer (MLPerf)
 Real programs, bigger is better, same DNN model, same data set, geometric mean

fair comparison, batch size ranges set
 Must update every 1-2 years to stay uptodate ⇒ organization

Embedded Computing and ML

● ML becoming one of the most important workloads
● But lots of applications don’t need highest performance

○ For many, just enough at low cost
● Microcontrollers most popular processors

○ Cheap, Low Power, fast enough for many apps
● Despite importance, no good microprocessor benchmarks

○ Still quote synthetic programs: Dhrystone, CoreMarks
● Decided to try to fix
● EmBench: better for all embedded, includes ML benchmarks also

7 Lessons for Embench
1. Embench must be free
2. Embench must be easy to port and run
3. Embench must be a suite of real programs
4. Embench must have a supporting organization to maintain it
5. Embench must report a single summarizing score
6. Embench should summarize using geometric mean and std. dev.
7. Embench must involve both academia and industry

The Plan
● Jan - Jun 2019: Small group created the initial version

− Dave Patterson, Jeremy Bennett, Palmer Dabbelt, Cesare Garlati
− mostly face-to-face

● Jun 2019 – Feb 2020: Wider group open to all
− under FOSSi, with mailing list and monthly conference call
− see www.embench.org

● Feb 2020: Launch Embench 0.5 at Embedded World
● Present: Working on Embench 0.6

http://www.embench.org/

Baseline Data
Name Comments Orig Source C LOC code size data size time (ms) branch memory compute

aha-mont64 Montgomery multiplication AHA 162 1,052 0 4,000 low low high

crc32 CRC error checking 32b MiBench 101 230 1,024 4,013 high med low

cubic Cubic root solver MiBench 125 2,472 0 4,140 low med med

edn More general filter WCET 285 1,452 1,600 3,984 low high med

huffbench Compress/Decompress Scott Ladd 309 1,628 1,004 4,109 med med med

matmult-int Integer matrix multiply WCET 175 420 1,600 4,020 med med med

minver Matrix inversion WCET 187 1,076 144 4,003 high low med

nbody Satellite N body, large data CLBG 172 708 640 3,774 med low high

nettle-aes Encrypt/decrypt Nettle 1,018 2,880 10,566 3,988 med high low

nettle-sha256 Crytographic hash Nettle 349 5,564 536 4,000 low med med

nsichneu Large - Petri net WCET 2,676 15,042 0 4,001 med high low

picojpeg JPEG MiBench2 2,182 8,036 1,196 3,748 med med high

qrduino QR codes Github 936 6,074 1,540 4,210 low med med

sglib-combined Simple Generic Library for C SGLIB 1,844 2,324 800 4,028 high high low

slre Regex SLRE 506 2,428 126 3,994 high med med

st Statistics WCET 117 880 0 4,151 med low high

statemate State machine (car window) C-LAB 1,301 3,692 64 4,000 high high low

ud LUD composition Int WCET 95 702 0 4,002 med low high

wikisort Merge sort Github 866 4,214 3236 4,226 med med med

Public Repository

What Affects Embench Results?
● Instruction Set Architecture: Arm, ARC, RISC-V, AVR, ...

− extensions: ARM: v7, Thumb2, …, RV32I, M, C, ...

● Compiler: open (GCC, LLVM) and proprietary (IAR, …)
− which optimizations included: Loop unrolling, inlining procedures,

minimize code size, …
− older ISAs likely have more mature and better compilers?

● Libraries
− open (GCC, LLVM) and proprietary (IAR, Sega, ...)

● Embench excludes libraries when sizing
− they can swamp code size for embedded benchmark

Impact of optimizations of GCC on RISC-V: Speed

● -msave-restore
invokes functions to
save and restore
registers at procedure
entry and exit instead
of inline code of stores
and loads
− ISA Alternative

would be Store
Multiple instruction
and Load Multiple
instruction

PULP RI5CY RV32IMC GCC 10.1.0 (higher is faster)

Impact of optimizations of GCC on RISC-V: Size

● -msave-restore
invokes functions to
save and restore
registers at
procedure entry and
exit instead of inline
code of stores and
loads

● ISA Alternative
would be Store
Multiple instruction
and Load Multiple
instruction

PULP RI5CY RV32IMC GCC 10.1.0 (lower is smaller)

Comparing Architectures with GCC: Speed

● GCC 10.2.0
− higher is faster

Arm Cortex-M4, no FPU
PULP RI5CY RV32IMC GCC 10.2.0 (soft core in FPGA

Comparing Architectures with GCC: Size

● GCC 10.2.0
− lower is smaller

Arm Cortex-M4, no FPU
PULP RI5CY RV32IMC GCC 10.2.0 (soft core in FPGA)

Comparing Compilers GCC v LLVM: Speed
● PULP RI5CY RV32IMC

− higher is faster

● Clang/LLVM variations

− -msave-restore
enabled by default
with ‑Os

− -Oz for further code
size optimization

GCC 10.2.0
Clang/LLVM 11.0.0 rc

Comparing Compilers GCC v LLVM: Size
● PULP RI5CY RV32IMC

− lower is smaller

● Clang/LLVM variations

− -msave-restore
enabled by default
with ‑Os

− -Oz for further code
size optimization

GCC 10.2.0
Clang/LLVM 11.0.0 rc

Code Size over GCC versions

Lots More to Explore with Embench
● More compilers: LLVM, IAR, …

− and more optimizations

● More architectures: MIPS, Tensilica, ARMv8, RV64I, ...
− and more instruction extensions: bit manipulation, vector, floating point, …

● More processors: ARM M7, M33, M24, RISC-V Rocket, BOOM, ...

● Context switch times

● In later versions of Embench: Interrupt Latency
− floating point programs for larger machines in Embench 0.6

● Published results in embench-iot-results repository

● Want to help? Email info@embench.org

mailto:info@embench.org

Benchmarking Lessons?
1) Must show code size with performance so as to get meaningful

results
2) Importance of geometric standard deviation as well as geometric

mean
3) More mature architecture have more mature compilers

Conclusions
● End of Dennard Scaling, slowing of Moore’s Law ⇒ DSA
● ML DSAs need HW/SW codesign
● To measure progress, need good benchmarks,
● MLPerf for data center and high end edge

● For microcontrollers, Embench 0.5 suite is already better than
synthetic programs Dhrystone and CoreMark, and will get better

− Many more studies: more ISAs, more compilers, more cores,

● Let us know if you’d like to help: Email info@embench.org

mailto:info@embench.org

