embedded VISIMN Summit

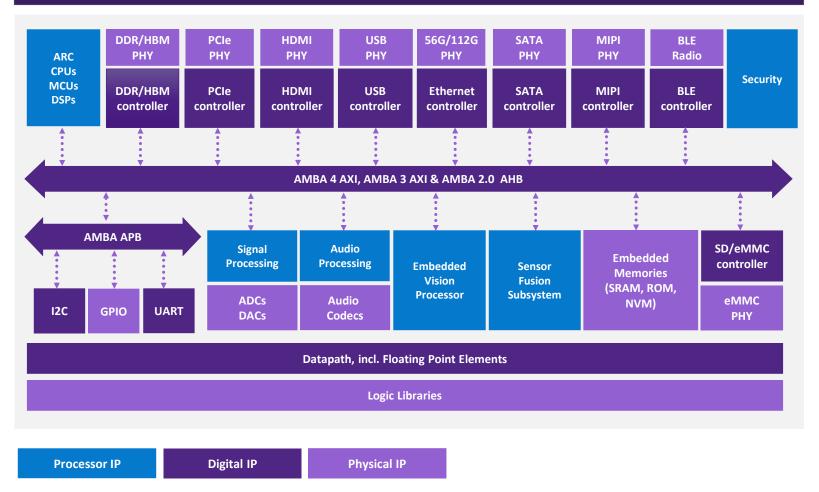
Trends in Neural Network Topologies for Vision at the Edge

Pierre Paulin Director of R&D September 2020

SYNOPSYS[®]

About Synopsys DesignWare IP

Design Solutions



Growing IP Business \$700M+ in Revenue; @ Double Digit CAGR

Broadest Portfolio Interfaces, Analog, Foundation IP, NVM, Processors and More

Committed to Your Success 4200+ IP Engineers Worldwide Dedicated to Quality

SYNOPSYS°

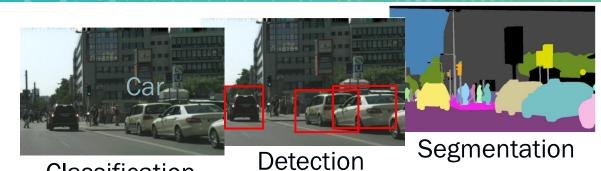
Trends in Machine Learning for Edge Applications

Key Challenges and Opportunities

Bandwidth Optimization

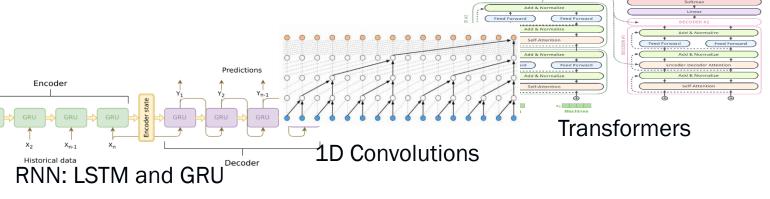
The Emergence of AI-based Techniques for Embedded **Systems**

- Image/video
 - Classification, detection, Segmentation
 - For surveillance, AR/VR, automotive
 - Super resolution, Denoiser
 - Computational photography, MFP, DTV
 - Mostly based on Convolution Neural Networks (CNN)
- Audio, Natural Language Processing
 - Speech, Text Processing
 - Recurrent Neural Networks / LSTM
 - 1D convolutions
 - Transformers
 - Audio scene classification
 - Convolution LSTMs



Classification





SYNOPSYS[®]

Classification

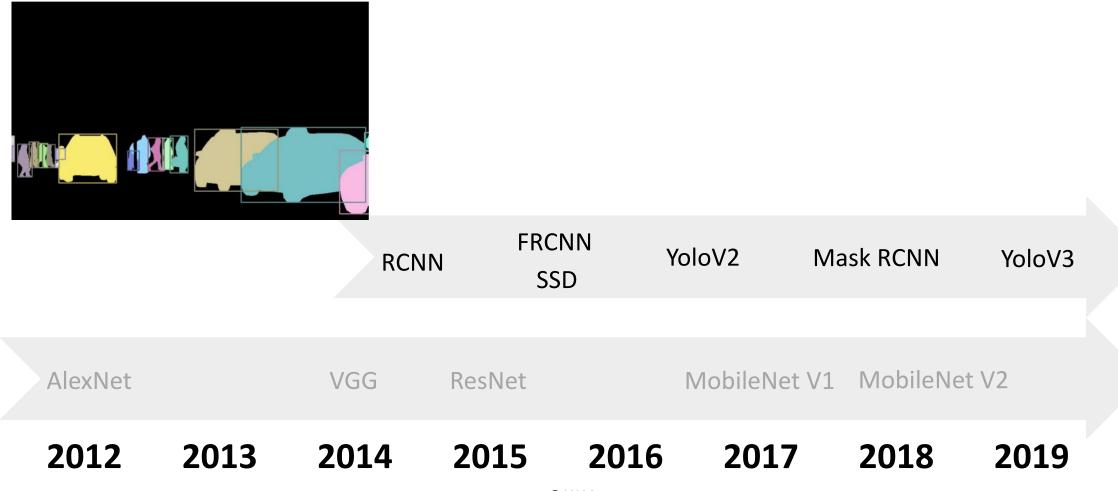
street

AlexNet		VGG	ResNet	MobileNet V1		MobileNet V2	
2012	2013	2014	2015	2016	2017	2018	2019

SYNOPSYS°

© 2020 Synopsys

Object Detection / instance segmentation



SYNOPSYS°

© 2020 Synopsys

			FCN	SegNet	DeepLab		DSNet	
		RCI	NN	FRCNN SSD	YoloV2	Mask R	RCNN YoloV3	3
AlexNet		VGG	Resl	Net	Mobile	eNet V1 Mo	obileNet V2	
2012	2013	2014	20	15 2	016 20)17 20	018 2019	

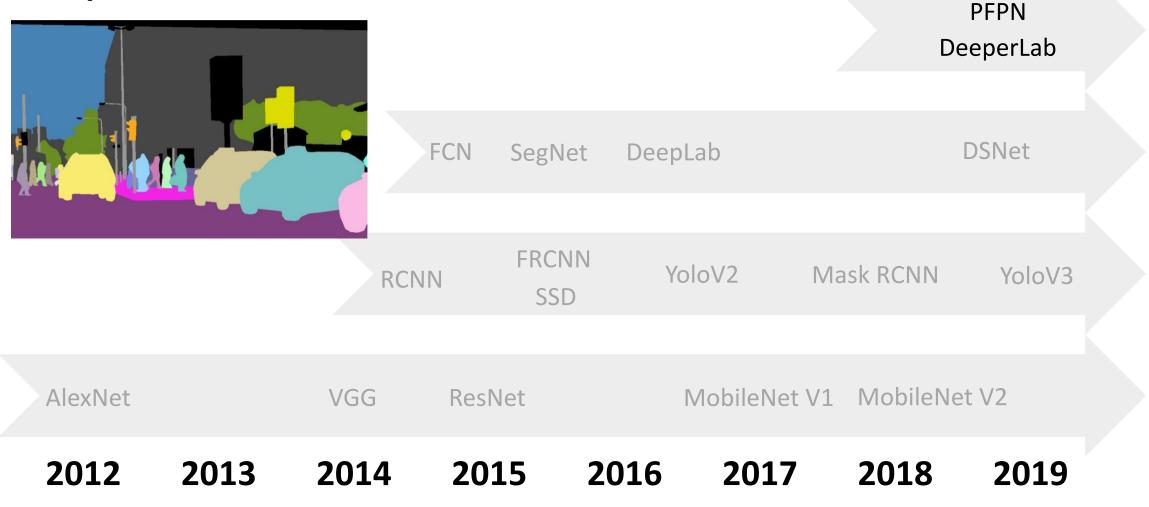
SYNOPSYS°

© 2020 Synopsys

embedded

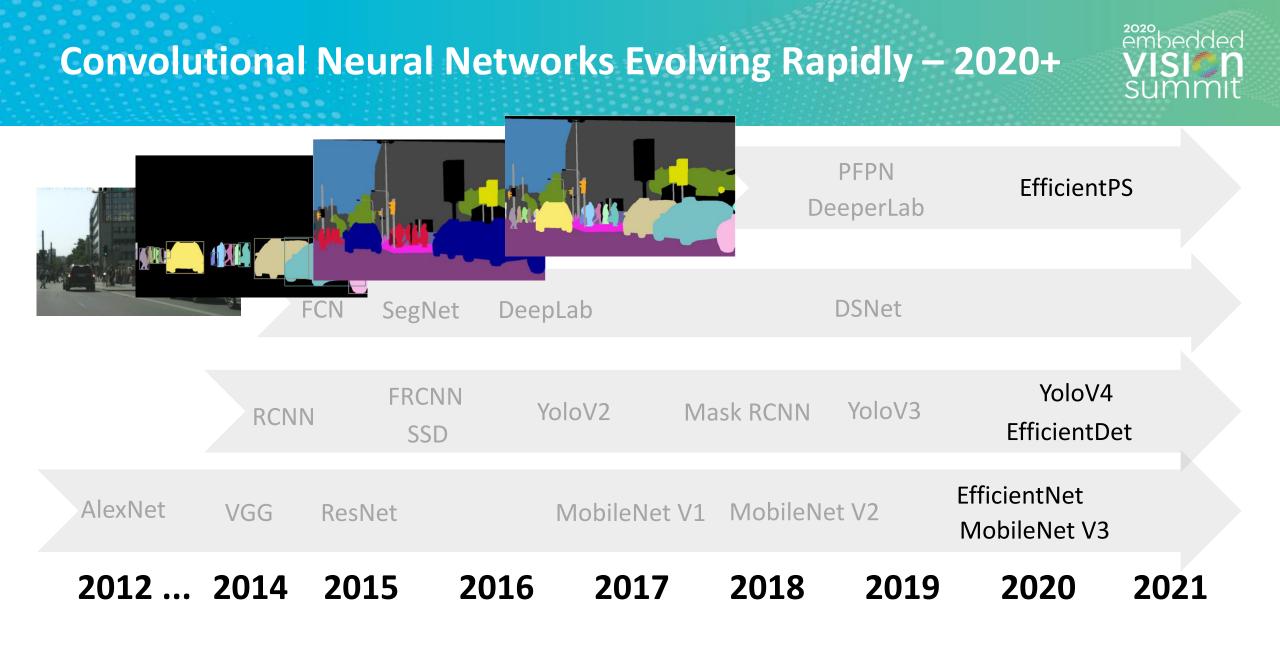
vision vision summit

Panoptic Vision

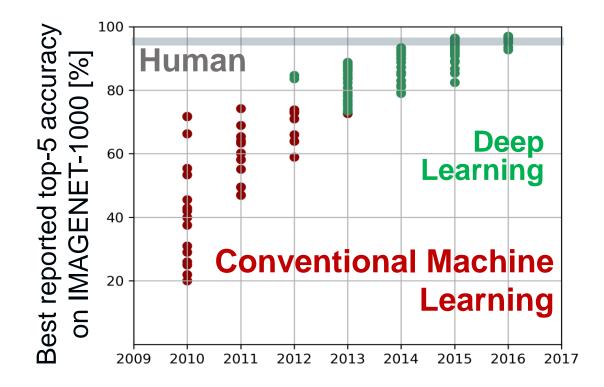


SYNOPSYS°

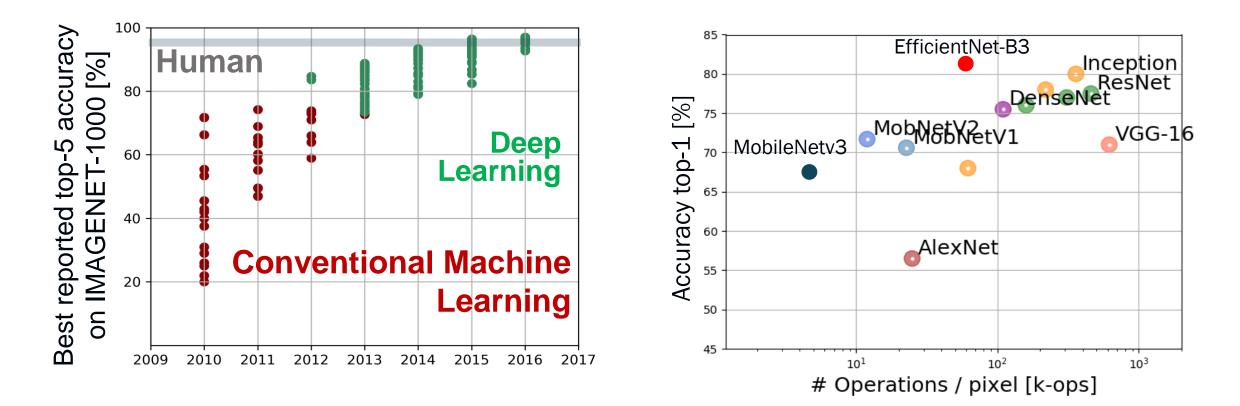
© 2020 Synopsys

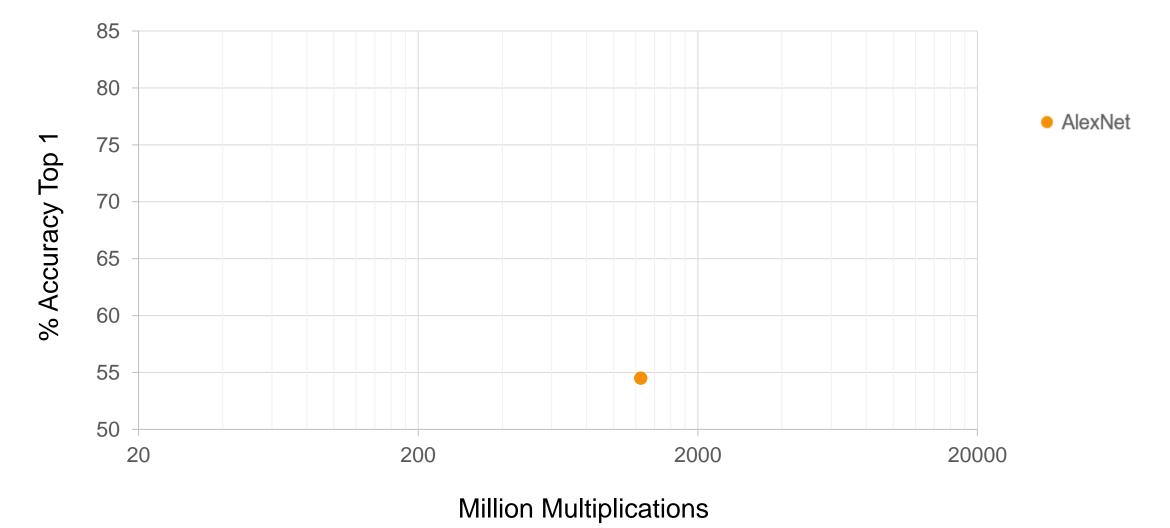


Neural network accuracy comes at a cost of a high workload per input pixel, large model sizes and huge bandwidth requirements



Neural network **accuracy** comes at a **cost** of a high workload per input pixel, large model sizes and huge bandwidth requirements

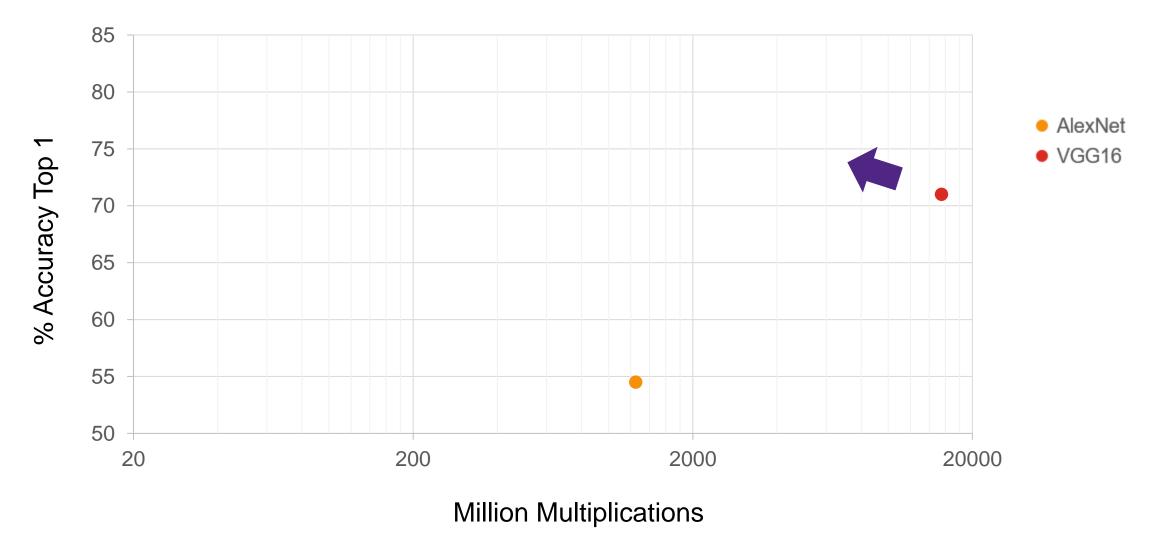




SYNOPSYS®

© 2020 Synopsys

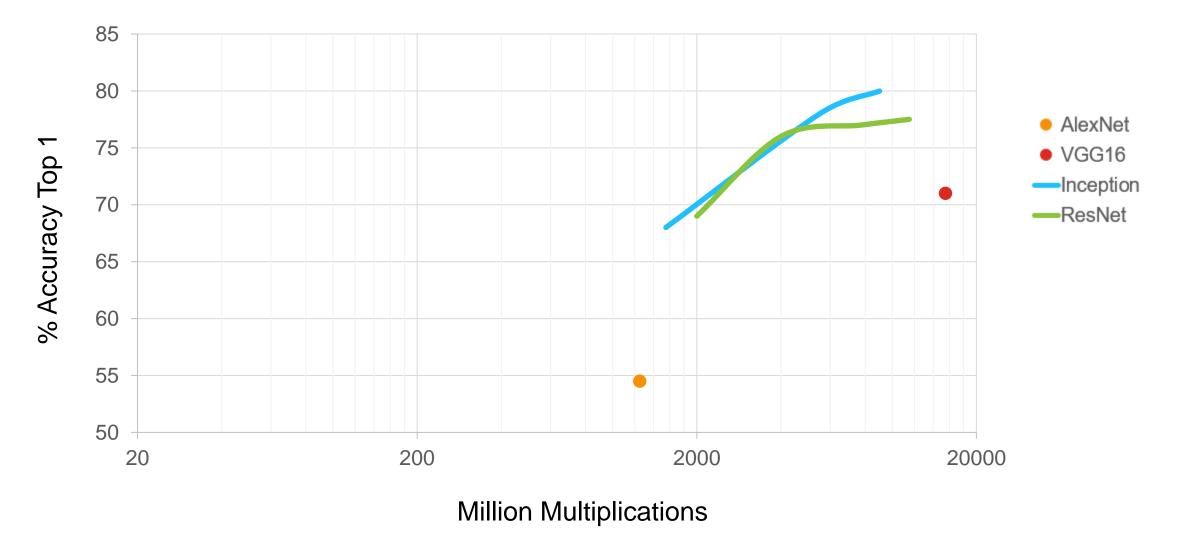
embedded



SYNOPSYS[®]

© 2020 Synopsys

embedded



SYNOPSYS°

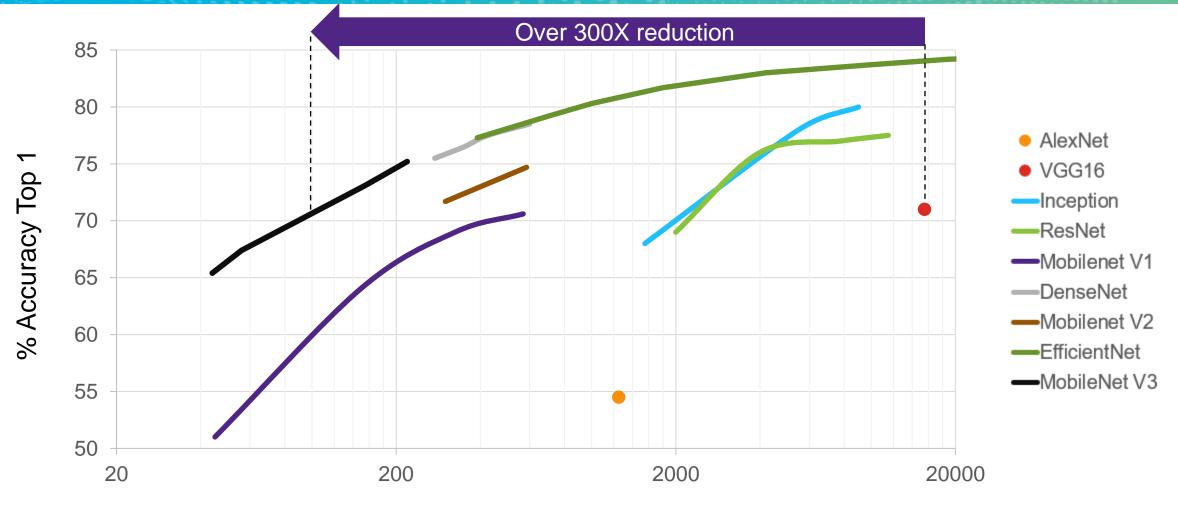
© 2020 Synopsys

embedded



© 2020 Synopsys

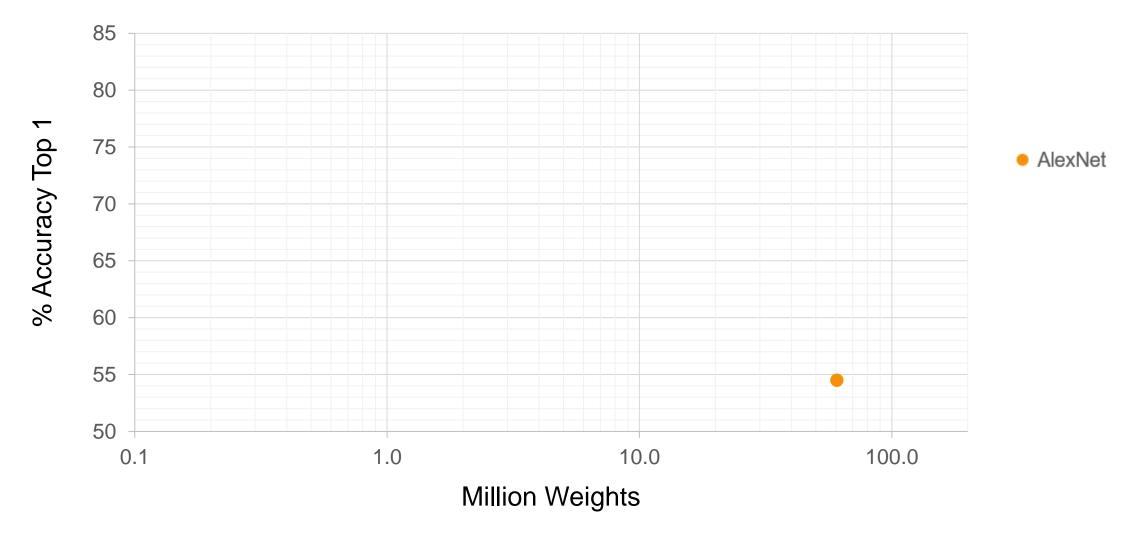
embedded



Million Multiplications

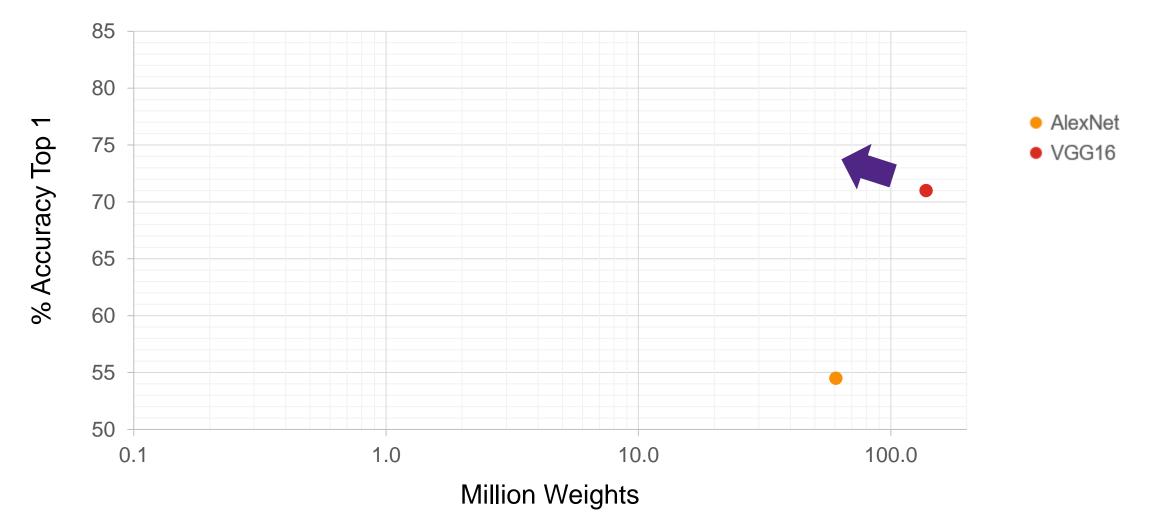
© 2020 Synopsys

embedded



SYNOPSYS°

© 2020 Synopsys

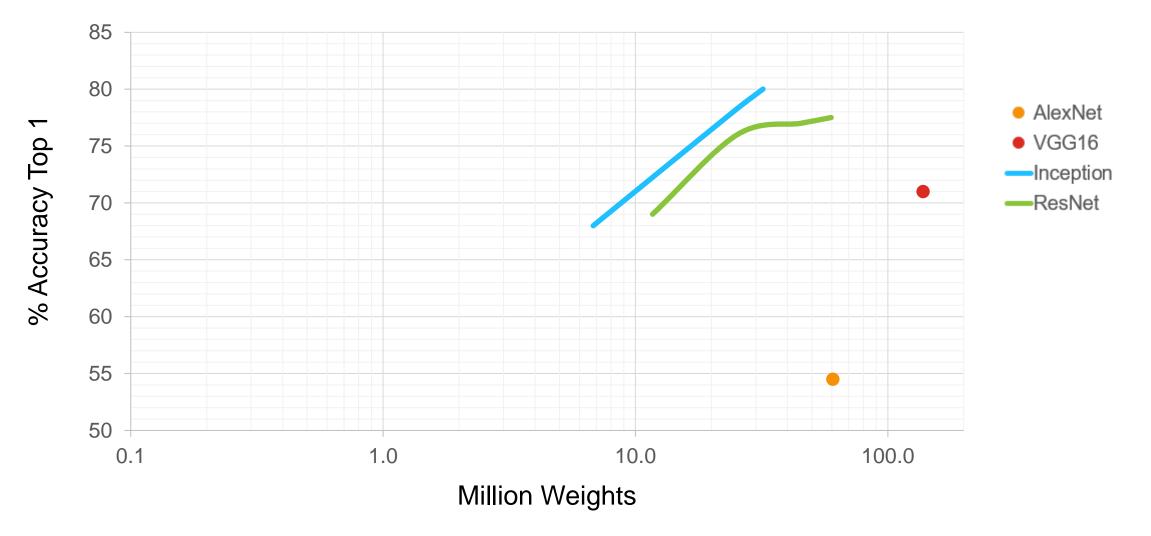


SYNOPSYS°

© 2020 Synopsys

embedded

VISI

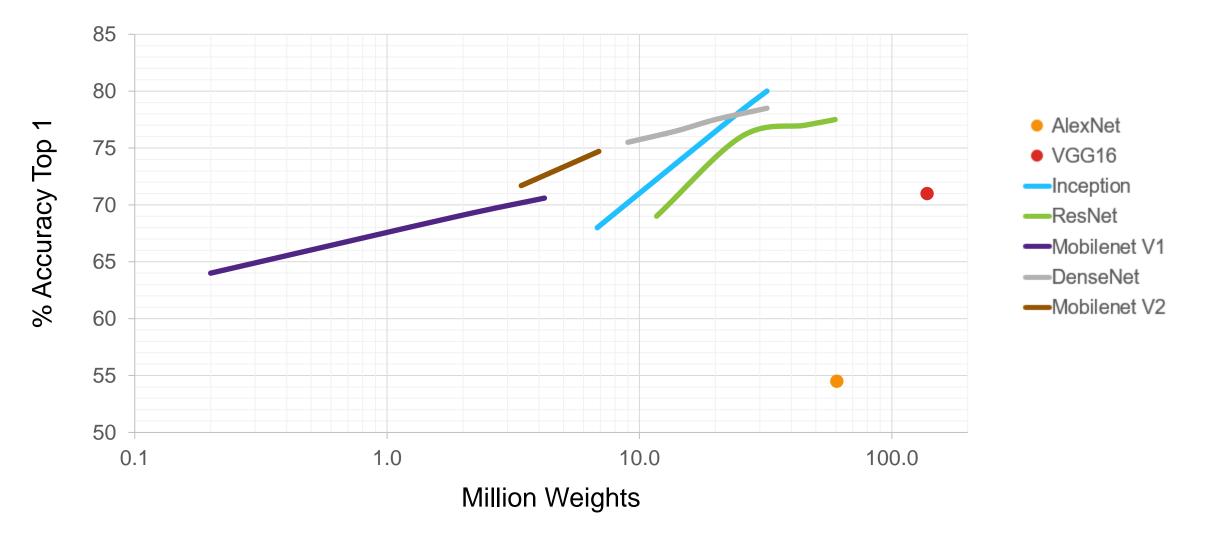


SYNOPSYS°

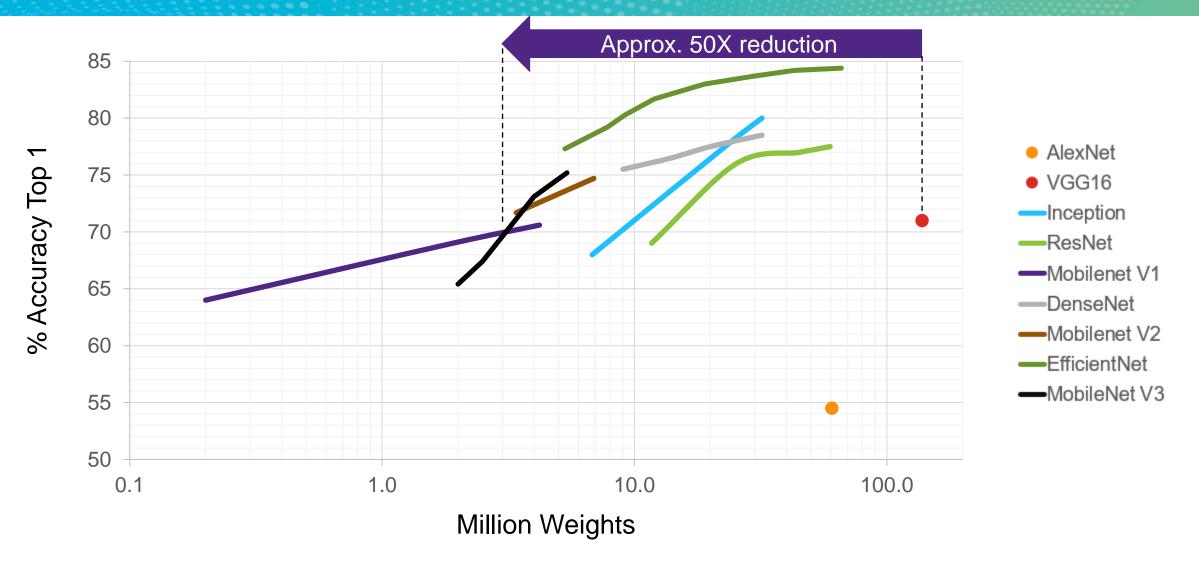
© 2020 Synopsys

embedded

VISI summ

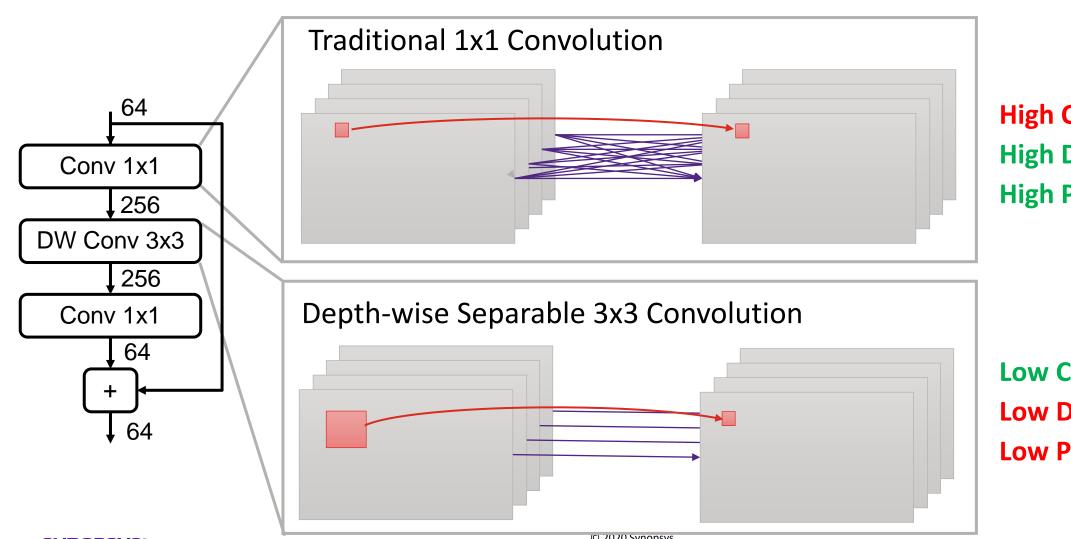


embedded



Trend 3: Reduced Data Reuse and Parallelism

Example: Depthwise Separable Kernels used in MobileNet V2/V3, EfficientNet

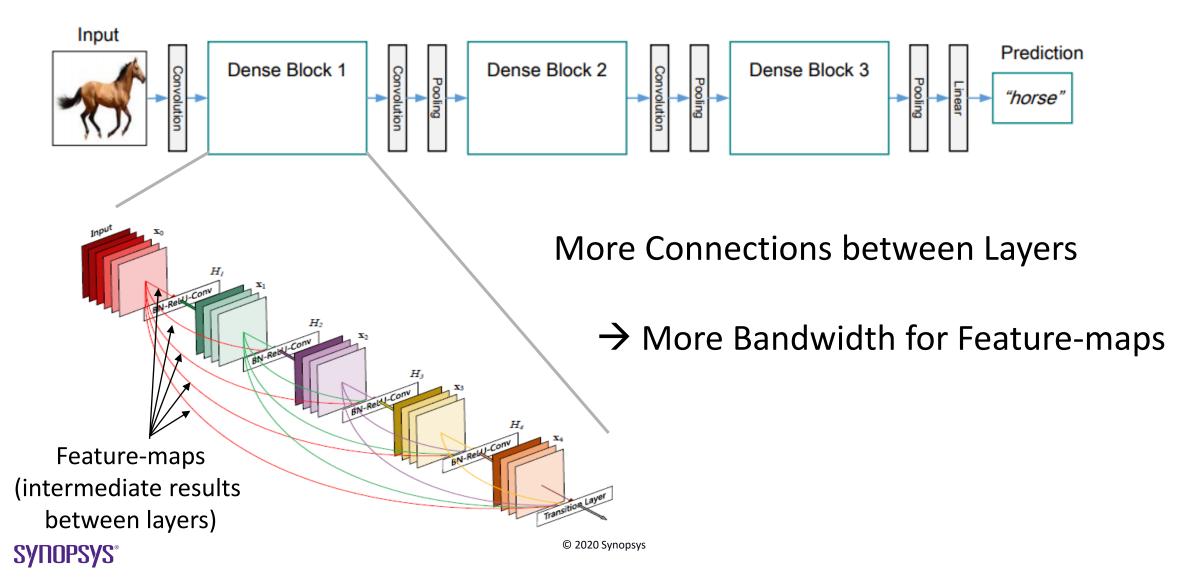


High Computation High Data Reuse High Parallelism

Low Computation Low Data Reuse Low Parallelism

SYNOPSYS[®]

© 2020 Synopsys

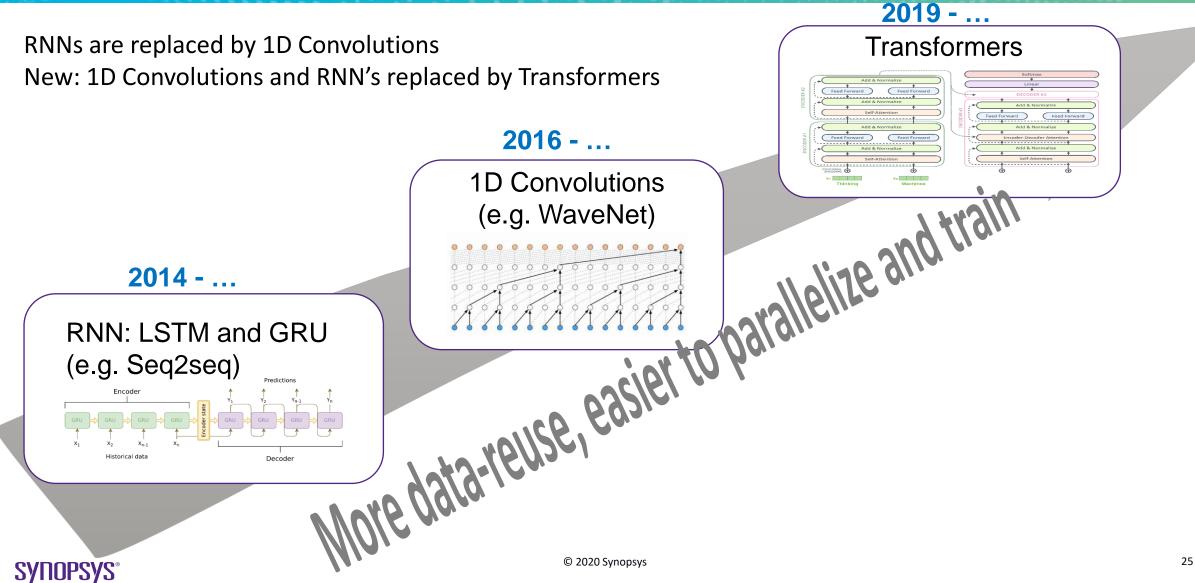


2020 embec

Trend 1:	Reduced Computational Requirements	
Trend 2:	Reduced Model Size	Examples:
Trend 3:	Reduced Data Reuse and Parallelism	MobileNet, EfficientNet
Trend 4:	Feature-map Bandwidth Becomes Dominant	

embedded

Trends in other domains like Audio & Speech



Key Challenges and Opportunities

• Opportunities

- Drive towards more efficient networks focused on real world constraints
- Well-defined, abstract high-level representation
- Standardization of framework data representation: TensorFlow and ONNX
- Challenges
 - Optimize compute resource utilization under tight bandwidth constraints
 - Memory bandwidth not scaling with compute resources
 - Energy efficiency (mJ/frame) related to resource utilization, and memory bandwidth
 - Low-power and low-area with high flexibility
 - Adapt to constant innovation of NN-based applications
 - Complexity of NN compiler tools
 - Single biggest investment in EV project resources

SYNOPSYS°

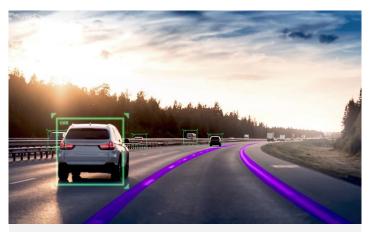
Vision Applications Require Varying Levels of Performance Performance requirements per application are increasing

- Facial recognition
- Always-on IoT / Smart Home
- Mid-end smartphones
- Games/toys
- Automotive in-cabin camera

<1 TOPS

- Augmented reality
- Surveillance
- Digital still cameras
- Automotive rear cameras
- High-end smartphones
- Natural language processing
- Robotics
- Drones

1 to 10 TOPS

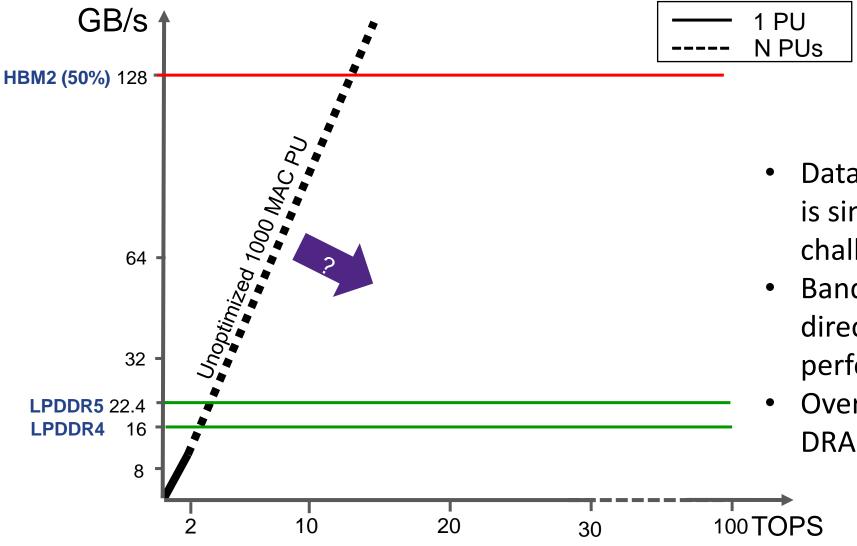


- Automotive front camera
- DTV Super resolution
- Microservers (inference)
- Data center (inference)

10 to 100s of TOPS

Synopsys°

Scaling Performance with Bandwidth Constraints



SYNOPSYS[®]

© 2020 Synopsys

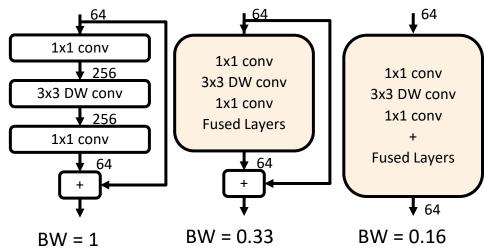
- Data bandwidth optimization is single most important challenge
- Bandwidth reduction has direct impact on performance and power
- Over 50% of SoC power is DRAM access

embed

Bandwidth Improvement Solutions

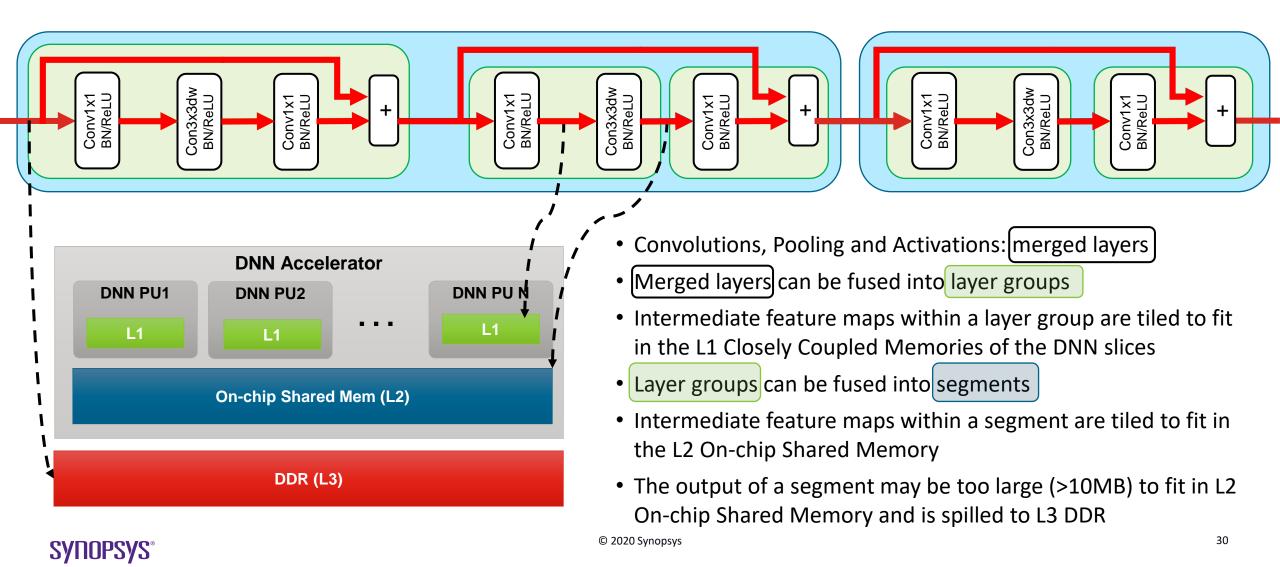
- Coefficient Pruning
 - Coefficients with a zero value are skipped/counted
 - Modern graphs have ~60% zero coefficients
- Feature Map Compression
 - Runtime compression and decompression of feature maps to external memory
 - Approx. 40% feature-map bandwidth reduction

- Multi-level Layer Fusion
 - Merging multiple folded layers into single primitives reduces feature map bandwidth



Multi-level Layer Fusion MobileNet v1/v2

Stored in L3 DDR
Stored in L2 OSM
Stored in L1 CCM



Summary of Key Challenges and Opportunities

Opportunities

- Drive towards more efficient networks focused on real world constraints
- Well-defined, abstract high-level representation
- Standardization of framework data representation: TensorFlow and ONNX
- Challenges
 - Low-power and low-area with high flexibility
 - Complexity of NN compiler tools
 - Optimize compute resource utilization under tight bandwidth constraints
 - Single biggest challenge
 - Multi-level layer merging, fusion and tiling part of solution

MobileNetV2: Inverted Residuals and Linear Bottlenecks: https://arxiv.org/pdf/1801.04381.pdf

Densely Connected Convolutional Networks: https://arxiv.org/abs/1608.06993

ICNet for Real-Time Semantic Segmentation on High-Resolution Images: <u>https://arxiv.org/abs/1704.08545</u>

Panoptic Segmentation: https://arxiv.org/abs/1801.00868 *EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks*: <u>https://arxiv.org/abs/1905.11946</u>

YOLOv4: Optimal Speed and Accuracy of Object Detection:

https://arxiv.org/pdf/2004.10934.pdf

Searching for MobileNetV3: https://arxiv.org/abs/1905.02244

SYNOPSYS[®]

Thank You

Pierre Paulin pierre.paulin@synopsys.com

