
© 2020 Advanced Micro Devices

[AMD Public Use]

Parallelizing machine learning
application in the cloud with
Kubernetes: A case study

Rajy Rawther,
Advanced Micro Devices
September 2020

© 2020 Advanced Micro Devices

[AMD Public Use]

Agenda

• ML application end-to-end flow

• Kubernetes: A brief introduction

• Scaling image classification in the cloud using Kubernetes

• Scaling inference from one server node to many

• Load balancing and identifying bottlenecks in the deployment pipeline

• How to choose between CPUs or GPUs for performance

• Conclusion

• Kubernetes is available at https://github.com/kubernetes/kubernetes and licensed under Apache 2.0

2

https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes/blob/master/LICENSE

© 2020 Advanced Micro Devices

[AMD Public Use]

ML application end-to-end flow

3

Choose Hardware

Data Collection

Build Model

Train

Deploy

Evaluate and

Update

• CPUs/GPUs or dedicated

• With right software infrastructure

• Data collection is tedious and quality of data matters

• Need synthetic data generation with tools for augmentation

• Start with simple model, train and update for accuracy

• Need many CPU and GPU cores to run these in a short amount
of time

• Efficient data pipeline is required to get optimal throughput

• When the model is given new data, there is a need to
evaluate and update the model for accuracy.

© 2020 Advanced Micro Devices

[AMD Public Use]

ML Software stack for application deployment

4

Processors

Programming

models

Middleware

libs

Frameworks and

exchange

formats

Cluster

Deployments

Applications

CPU GPU DLA

ONNX

HIP OpenVXCuda

Blas/Eigen RNG/FFT MIOpen CuDNN

TensorFlow PyTorch Caffe2

OpenCL

Docker Kubernetes Singularity SLURM

Vision NLP
Classification

/Detection
Video

APU

Python

NNEF

© 2020 Advanced Micro Devices

[AMD Public Use]

Kubernetes is an open-source system for automatic deployment, scaling

and management of containerized applications

Kubernetes®(K8s): A brief introduction

• Node

• Runs Kubelets (“node agent” service)

• Communicates with master

• Runs Pods

• Pod

• Runs one or more containers

• Exists on a node

• Service

• Handles requests

• Load balances

• Deployment

• Defines what you want(cluster services);
Kubernetes handles it for you

5

K8s cluster

services

Master Node

Node

containers

Pod

Node

containers

Pod

Node

containers

Pod

Appl.yaml

API

© 2020 Advanced Micro Devices

[AMD Public Use]

Need for containerized and scalable deployment

6

Each deployment
is self-contained &

can run on any
system which has

the hardware
resources.

Easily manage
resources over

multiple servers

The ability to
cluster and
schedule
container

processing to
scale

Can easily access
data across the

nodes

The Task

Develop the
application

Create docker
container

Launch on
Kubernetes

© 2020 Advanced Micro Devices

[AMD Public Use]

Typical deployment YAML file for Kubernetes
configuration
Deployment YAML configuration

Service YAML configuration

7

© 2020 Advanced Micro Devices

[AMD Public Use]

Load balancing a deployment pipeline with CPU and GPU

8

Model
Initialization is

done only
once as part of

initialization

Preprocessing
involves

decoding and
applying many

transformations

CPUs are best
suited for

preprocessing
and

postprocessing

Data-parallel
processors are

efficient for
running

inference on a
batch of
images

Postprocessing
is needed to

produce useful
result

© 2020 Advanced Micro Devices

[AMD Public Use]

Initialize Inference

(Compile, build inference graph,

set-up hardware)

Inference deployment client server application case study

9

Image

database

1. Choose model

& parameters

2. Choose dataset

3. View resultsResults

Up to 8 GPUs on a single

server node

A

G

B

F

C D

E

A-G Critical path flow

Client Application

Setup Phase

Model and Parameters

Status

Inference Execution

GPU #0

GPU #1

GPU #2

GPU #3

…

Image decode

Image Transform

Multi-GPU inference

CPU

cores

Images

Results

Server Node

© 2020 Advanced Micro Devices

[AMD Public Use]

10

Inference Deployment Using Kubernetes

Inference Client
Application

Client Desktop/Server Server

K8s Load
Balancer

K8s
POD

Allocated CPU
& GPU

K8s
POD

Allocated CPU
& GPUK8s

POD

Allocated CPU
& GPUK8s

POD

Allocated CPU
& GPUK8s

POD

Allocated CPU
& GPUK8s

POD

Allocated CPU
& GPUK8s

POD

Allocated CPU
& GPUK8s

POD

Allocated CPU
& GPUK8s

POD

Allocated CPU
& GPUK8s

POD

Allocated CPU
& GPUK8s

POD

Allocated CPU
& GPUK8s

POD

Allocated CPU
& GPUK8s

POD

Allocated CPU
& GPUK8s

POD

Allocated CPU
& GPU

Inference Server Container

K8s
POD

Container mapped to K8s Pods

Application image

© 2020 Advanced Micro Devices

[AMD Public Use]

Scaling ML Inference with Kubernetes®

11

Node = 8 pods

Pod = 1 GPU + 8 CPU

© 2020 Advanced Micro Devices

[AMD Public Use]

Performance Graph with multiple GPUs and CPUs

12

98%

scaling

© 2020 Advanced Micro Devices

[AMD Public Use]

Steps for achieving linear scaling

• Remove bottlenecks in the inference server critical path.

• Allocate hardware resources for each deployment pod. In this case we choose 1 GPU and 8

CPU cores

• The application needs to maintain separate queues (as shown in the next slide) for each

instance of application so multiple instances won’t block each other.

• The model is pre-launched and initialized for each nod separately

• The data loading bottleneck is avoided by preloading input images for each nod in advance

• Finally, use a multi-threaded client application that feeds and sends requests for each of the

K8s pod with minimal latency.

13

© 2020 Advanced Micro Devices

[AMD Public Use]

CLIENT:
READ HDD

CLIENT: XMIT
SERVER:
JPEG
DECODE

COPY: PCIE
TO GPU

GPU:
INFERENCE

SERVER:
SEND
RESULTS

CLIENT:
DISPLAY
RESULTS

Inference server critical path

Network

bandwidth

~100 Gbps

JPEG decode,

resize and

convert to tensor

multi-threaded

~200 MB/sec

*128 threads

(~100000 fps)

Execute

batched deep

learning

inference on

the model

1200 fps

(fp16 on MI50)

Collect inference

results (PCIe™

from GPU to CPU)

and xmit back to

client

~32 GB/s for x16

Drive Speed

NVMe =

~3.5GB/sec

(~5000fps)

Check and

show results

Update

performance

specs

PCIe™

bandwidth

32GB/s for x16

(~50000 FPS)

Limiting factor or tasks

A

A-G Critical path flow

CB D E F G

14

© 2020 Advanced Micro Devices

[AMD Public Use]

One queue

per GPU

One master
input queue

One queue

per GPU

Retirement queuesInference queues

GPUCPU cores

Pre-processing

queues

Server processing queues

Input

Queue

➢ Decode

➢ Resize

➢ Convert to

tensor

➢ Inference on

Model

(ResNet50)

➢ Predictions

➢ Convert to

labels

CPU
CPU

One queue

per GPU

GPU #1 GPU #2 GPU #1 GPU #2

GPU #1 GPU #2

GPU

TCP/IP TCP/IP

15

© 2020 Advanced Micro Devices

[AMD Public Use]

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 3 4

O
ve

ra
ll
 F

P
S

Classification pipeline stages, potential FPS

Series1 Series2

Series3
1 4 16 32 1 4 16 32 1 2 4 8

Overall balance of different stages of pipeline

16

© 2020 Advanced Micro Devices

[AMD Public Use]

Kubernetes Pros and Cons

17

PROS CONS

• Deep integration into cloud native ecosystem
• Broad support for containers and runtimes
• Automatic scaling and load balancing
• Efficient resource management
• Multiple workloads and deployment options
• Built-in security
• Integration with major cloud providers

• Steep learning curve
• Challenging to install and configure

manually
• Not suited for simple applications and can

reduce productivity adopting it
• Need expensive talent to adopt it

© 2020 Advanced Micro Devices

[AMD Public Use]

Next Steps: Collecting metrics and evaluating the results

• Each K8s container can collect metrics
asynchronously.

• Evaluating the neural network model
guarantees the model will perform well
given new data

• Various tools can be used to evaluate
model for a given dataset

• E.g., inference analyzer to validate
different models on one or more
dataset

18

© 2020 Advanced Micro Devices

[AMD Public Use]

Final Thoughts

19

© 2020 Advanced Micro Devices

[AMD Public Use]

Conclusion

20

As ML takes over many parts of our lives from protecting people to autonomous
driving, we need simple automated ways to deploy and scale those applications

Data scientists need to analyze and iterate data-sets, algorithms and without
slowing them down or placing heavy burden on company resources

By carefully developing your application for cloud-native environment with containers
and micro-services, scientist can greatly scale those for portability and performance

© 2020 Advanced Micro Devices

[AMD Public Use]

References

MIVisionX

https://github.com/GPUOpen-

ProfessionalCompute-Libraries/MIVisionX

Kubernetes

https://kubernetes.io/docs/home/

ResNet

https://github.com/onnx/models/tree/master/

vision/classification/resnet

21

https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX
https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX
https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX
https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX
https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX
https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX
https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX
https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX
https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX
https://kubernetes.io/docs/home/
https://github.com/onnx/models/tree/master/vision/classification/resnet

© 2020 Advanced Micro Devices

[AMD Public Use]

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and
typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons,
including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product
releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any
computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation
to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make
changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS
HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS
INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL,
OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS
EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2020 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, Epyc, Radeon, ROCm and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other
product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

22

© 2020 Advanced Micro Devices

[AMD Public Use]

