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Agenda

• ML application end-to-end flow

• Kubernetes: A brief introduction

• Scaling image classification in the cloud using Kubernetes

• Scaling inference from one server node to many

• Load balancing and identifying bottlenecks in the deployment pipeline

• How to choose between CPUs or GPUs for performance

• Conclusion

• Kubernetes is available at https://github.com/kubernetes/kubernetes and licensed under Apache 2.0
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https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes/blob/master/LICENSE
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ML application end-to-end flow
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Choose Hardware

Data Collection

Build Model

Train

Deploy

Evaluate and 

Update

• CPUs/GPUs or dedicated

• With right software infrastructure

• Data collection is tedious and quality of data matters 

• Need synthetic data generation with tools for augmentation

• Start with simple model, train and update for accuracy

• Need many CPU and GPU cores to run these in a short amount 
of time

• Efficient data pipeline is required to get optimal throughput

• When the model is given new data, there is a need to 
evaluate and update the model for accuracy.
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ML Software stack for application deployment
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Kubernetes is an open-source system for automatic deployment, scaling 

and management of containerized applications

Kubernetes®(K8s): A brief introduction

• Node

• Runs Kubelets (“node agent” service)

• Communicates with master

• Runs Pods

• Pod

• Runs one or more containers

• Exists on a node

• Service

• Handles requests

• Load balances

• Deployment

• Defines what you want(cluster services); 
Kubernetes handles it for you
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Need for containerized and scalable deployment
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Each deployment 
is self-contained & 

can run on any 
system which has 

the hardware 
resources.

Easily manage
resources over

multiple servers

The ability to
cluster and
schedule
container

processing to
scale

Can easily access
data across the

nodes

The Task

Develop the 
application

Create docker 
container

Launch on 
Kubernetes
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Typical deployment YAML file for Kubernetes 
configuration
Deployment YAML configuration

Service YAML configuration
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Load balancing a deployment pipeline with CPU and GPU
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Model 
Initialization is 

done only 
once as part of 

initialization

Preprocessing 
involves 

decoding and 
applying many 

transformations

CPUs are best 
suited for 

preprocessing 
and 

postprocessing 

Data-parallel 
processors are 

efficient for 
running 

inference on a 
batch of 
images

Postprocessing 
is needed to 

produce useful 
result
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Initialize Inference

(Compile, build inference graph, 

set-up hardware)

Inference deployment client server application case study
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Inference Deployment Using Kubernetes
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Scaling ML Inference with Kubernetes®
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Node = 8 pods

Pod  = 1 GPU + 8 CPU
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Performance Graph with multiple GPUs and CPUs 
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98% 

scaling
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Steps for achieving linear scaling

• Remove bottlenecks in the inference server critical path.

• Allocate hardware resources for each deployment pod. In this case we choose 1 GPU and 8 

CPU cores

• The application needs to maintain separate queues (as shown in the next slide) for each 

instance of application so multiple instances won’t block each other.

• The model is pre-launched and initialized for each nod separately

• The data loading bottleneck is avoided by preloading input images for each nod in advance

• Finally, use a multi-threaded client application that feeds and sends requests for each of the 

K8s pod with minimal latency. 
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CLIENT: 
READ HDD

CLIENT: XMIT
SERVER: 
JPEG 
DECODE

COPY: PCIE 
TO GPU
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SEND 
RESULTS
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Inference server critical path 
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One queue 

per GPU
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Kubernetes Pros and Cons
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PROS CONS

• Deep integration into cloud native ecosystem
• Broad support for containers and runtimes
• Automatic scaling and load balancing
• Efficient resource management
• Multiple workloads and deployment options
• Built-in security
• Integration with major cloud providers

• Steep learning curve
• Challenging to install and configure 

manually
• Not suited for simple applications and can 

reduce productivity adopting it
• Need expensive talent to adopt it
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Next Steps: Collecting metrics and evaluating the results

• Each K8s container can collect metrics 
asynchronously.

• Evaluating the neural network model 
guarantees the model will perform well 
given new data

• Various tools can be used to evaluate 
model for a given dataset

• E.g., inference analyzer to validate 
different models on one or more 
dataset
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Final Thoughts
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Conclusion
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As ML takes over many parts of our lives from protecting people to autonomous 
driving, we need simple automated ways to deploy and scale those applications

Data scientists need to analyze and iterate data-sets, algorithms and without 
slowing them down or placing heavy burden on company resources

By carefully developing your application for cloud-native environment with containers 
and micro-services, scientist can greatly scale those for portability and performance
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Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and 
typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, 
including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product
releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any 
computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation 
to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make 
changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS 
HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS 
INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS 
FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, 
OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS 
EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
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