
© 2020 Codeplay Software Ltd

Deploying AI Software to 
Embedded Devices Using Open 
Standards

Andrew Richards
Codeplay Software
September 2020



© 2020 Codeplay Software Ltd

Understanding the Challenge



© 2020 Codeplay Software Ltd

What Kinds of “AI” are There and How Does That Affect 
Deployment?

If you want to get good 
performance-per-Watt, then each 
different type of AI algorithm should 
map to a different type of processor 
with different characteristics

Many applications involve multiple 
types of AI algorithm

Deep 
learning 

inference

• Low-precision inference, fixed sizes

• …. (varying complexity of models) …

• Floating-point inference

Machine 
vision

•Classical machine vision

•SLAM

Sensor 
fusion

•Kalman filters

•Mapping from multiple sources

•Occupancy grids

Decision 
making and 

planning
•Path-planning

Deep 
learning 
training

•Sometimes deployed: e.g. federated 
learning, or on-device learning for 
privacy

3



© 2020 Codeplay Software Ltd

Types of Deep Learning Inference

Deep learning “inference” applies a trained neural network to real-world data

Some kinds of deep learning algorithm make much tougher demands on the software 
tools and processor hardware than other kinds

4

Image Classification

•Given an image of an object, 
recognizes that object

•Fixed-sizes: only one image 
and one object

•Good fit for very fixed-
function hardware

•Low precision (e.g. 8-bit) is 
enough

•Widely supported by 
software tools & hardware

Object detection

•Given an image, find and 
classify all the objects in the 
image

•Variable numbers of objects 
in images, so this 
complicates the software

•Needs a mix of fixed-function 
hardware and some control 
software

•A surprising number of 
software tools & deep 
learning processor don’t 
handle this well

Semantic Segmentation

•Given an image, find objects, 
but classify all pixels by what 
object they are part of

•Variable numbers of objects 
in images

•Deconvolution operations to 
map classifications back to 
pixels

•This is much tougher for 
hardware and software to 
support: much rarer for 
current deep learning 
processors to support this

Behavior Prediction

•Autonomous systems need 
to predict where a vehicle or 
person will be in the future, 
not just where it is now

•These networks usually 
require higher-precision 
arithmetic than vision 
networks



© 2020 Codeplay Software Ltd

Types of Machine Vision Algorithm

Not everything in an AI system is deep learning

There are lots of good reasons to use non-deep-learning algorithms with deep-learning
➢ Safety (2 approaches for redundancy); Extracting different information (e.g. spatial info); Explainability

5

SLAM

• Simultaneous 
Localization And 
Mapping

• Enables you to create a 
3D map of the world

• Very important for 
mapping obstacles that 
deep learning won’t 
recognize as objects

Object detection

• There are both deep 
learning and classical 
machine vision 
approaches to object 
detection

• Safety may require 
comparing a deep-
learning with a non-
deep-learning object 
detection

Pre-processing

• It is very common to 
have to pre-process 
data before putting it 
into deep learning 
inference

• e.g. lens distortion 
correction 

Post-processing

• Many neural networks 
need to post-process 
the data to get useful 
data out

• e.g. semantic 
segmentation marks out 
where a road is visible, 
but you need to convert 
that into a 3D road 
representation



© 2020 Codeplay Software Ltd

Sensor Fusion and Path Planning

The previous algorithms were all about sensing: detecting what is going on in the world

An autonomous system will then need to fuse the different sources of perception data 
together to try to create an accurate picture of the world

Finally, an autonomous system needs to plan how to act in its environment

6

Object Tracking

•Object recognition from 
different sensors and 
perception algorithms needs 
to be combined to 
understand where objects 
are and where they are 
going

3D Maps

•Different objects, terrains 
and roads need to be 
mapped

•This could combine existing 
mapping data with new 
perceived data

Path Planning

•An autonomous system 
needs to work out a plan of 
what it can do next, taking 
into account what other 
objects may do



© 2020 Codeplay Software Ltd

Types of AI Processor Core

CPUs

• Easy to program

• Best for low-latency operations

• Best for small workloads (very small 
neural networks, or many sensor 
fusion algorithms)

GPUs

• Very high processing performance on 
large workloads

• Sometimes good, sometimes great 
software tools

• Terrible at latency-sensitive tasks 
(e.g. small Kalman filters)

• Not so great at sparse operations

FPGAs

• Very efficient at custom tasks

• Not as powerful at general compute 
operations as CPUs or GPUs

• Very good at latency-sensitive tasks

• Tools are tough, but getting better

DSPs

• Excellent at signal processing

• Being brought into a range of vision 
tasks

• Harder to program than GPUs, but 
may give greater efficiency

Deep learning accelerators

• Very high performance for the deep 
learning operations they support

• Not, usually, suitable for general 
programmability

7

To get best 

performance per 

Watt, you want 

to map 

algorithms to 

the right cores

Often, a system-

on-chip has 

multiple types of 

processor core 

on the chip



© 2020 Codeplay Software Ltd

Why Use Open Standards?

If you use proprietary tools, it’s very hard to move your algorithms to the processor that 
will best perform for your application

Open standards let you find the best cost/performance/power for your application

Open standards let you support your application over a longer period of time

Open standards are well-specified and so integrate well and can be maintained

Open standards are a safe investment: the standards you are building your application on 
will stay supported in the future

8



© 2020 Codeplay Software Ltd

Analysing Your Application



© 2020 Codeplay Software Ltd

Step 1: How Did you Design your Algorithms?

Written an entire application as 
software that should run on the 

target device
Written the application as models 

(e.g. Matlab) that needs to be 
converted to run on the device

10

If your application is software that could run 

on the device, what did you write it with?

❑ CUDA

❑ OpenCV

❑ TensorFlow

❑ PyTorch

How do you want to proceed?

❑ Do you want to write the application as 

embedded Software?

❑ Or, do you want to generate the software 

from the models?

Often we see applications that are a mix of these two



© 2020 Codeplay Software Ltd

From Proprietary to Standard

11

Original 

Software

Common 

Examples
Challenges

Standard Deployment 

Options

CUDA

TensorFlow, PyTorch, 

Eigen, + lots of in-

house code

NVIDIA GPU-only

SYCL, oneAPI (you can run both 

on NVIDIA GPUs as well as 

many other accelerators)

OpenCL OpenCV, Glow, TVM

Portable, but not performance-

portable: Will run on new OpenCL 

device, but will need optimizing 

per-device

OpenCL

AI Graph 

Compilers
XLA, Glow, TVM

Each graph compiler supports a 

different set of options, datatypes 

and runtime APIs

OpenVX, or use the same 

graph compiler on top of 

OpenCL (Glow & TVM allow 

this), or use ONNX to transform 

to device-specific AI compiler



© 2020 Codeplay Software Ltd

Step 2: How Does your Application Perform?

Always profile your application before optimizing!

With a system-on-chip, you will get the best performance by running different algorithms 
on different processor cores at the same time

 so, you can run deep learning & machine vision on different cores

Some operations are bandwidth-bound (i.e. the performance is limited by memory 
access) and some are compute-bound (i.e. performance is limited by FLOPS/TOPS)

No point running a bandwidth-bound operation on a faster-computation processor

 For many AI processors, there is on-chip-memory: this is much faster, but much 
smaller, than typical off-chip-memory. Can you fit your model in on-chip-memory?

12



© 2020 Codeplay Software Ltd

Performance Optimization with Open Standards

For bandwidth-bound operations there is very 
little difference between programming models 

(memory dominates)

13

For compute-bound operations, you need to replace a 
device-specific library (e.g. cuBLAS) with a new device-
specific library (e.g. MKL-BLAS) or with an autotuning 

library (e.g. TVM, clBlast or SYCL-DNN)

Arm 

Compute 

Library

SYCL-DNN 

+ SYCL-

BLAS



© 2020 Codeplay Software Ltd

Step 3: Mapping Algorithms to Processors

Small algorithms (e.g. small Kalman filters) don’t offload well to a processor, unless you 
can group a lot of them together

Vision networks are usually int8 or int16, but behaviour-prediction networks are usually 
floating-point: the data types restrict the processors that will support the network

Adapting your network for embedded devices:
▪ Do you need high precision floating-point?
▪ Can you use sparse networks? Not so good for GPUs but can be better for some cores
▪ You need to adapt the training of your network for the restrictions of the device
▪ Can you fit it into on-chip memory to get the performance up?

Custom, hand-coded algorithms, need to go onto programmable cores

14



© 2020 Codeplay Software Ltd

Doing the Deployment



© 2020 Codeplay Software Ltd

Re-training Networks for Device Precision

Most efficient AI cores use reduced precision to achieve performance improvements

First, train your network with floating-point precision

Then, you need to slightly re-train your network for the precision of the device: this 
works by applying the device precision into the training process and the training then 
adapts the weights a little to match the impact of precision changes

Reduced precision and sparsity can achieve big improvements in performance in some 
cases, with often only a very small impact in accuracy

You then need to re-test your network to ensure it is still accurate enough



© 2020 Codeplay Software Ltd

Optimization On-device

Different processors have massively variable performance across different algorithms

This means, you can’t expect good performance when deploying to a new device straight 
away: you will have to do some per-device optimization

Use profiling tools where available to understand the performance on-device

Memory access patterns vary widely by device

You want to achieve:
• Good use of on-chip memory (both shared and local)
• Good use of DMA: this can massively speed up memory access on non-GPU-cores
• Don’t optimize compute on bandwidth-bound operations: waste of time

17



© 2020 Codeplay Software Ltd

Resource Slide

SYCL

Standard documentation

https://www.sycl.tech

OpenCL

https://www.khronos.org/opencl/

OpenVX

https://www.khronos.org/openvx/

Codeplay

https://www.codeplay.com

oneAPI

https://www.oneapi.com/

Compatibility Tool (auto-converts CUDA to 

DPC++)

https://software.intel.com/content/www/

us/en/develop/tools/oneapi/components/

dpc-compatibility-tool.html

18

https://www.khronos.org/openvx
https://www.khronos.org/opencl/
https://www.khronos.org/openvx/
https://www.codeplay.com/
https://www.oneapi.com/
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/dpc-compatibility-tool.html

