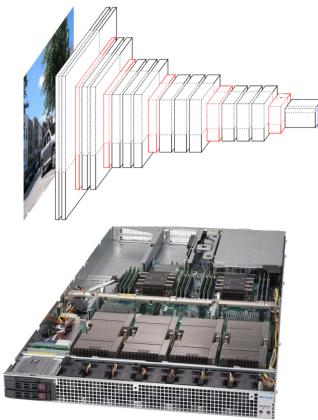
embedded VISIMN Summit

Joint Regularization on Activation and Weights for Efficient Neural Network Pruning

Zuoguan Wang, Senior Algorithm Manager September 2020

Neural Network Deployment Challenge

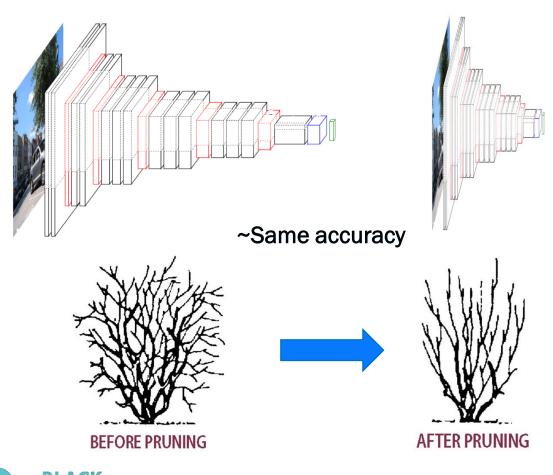


Computation & Memory & Power

Deployment

Embedded system, e.g., autonomous driving

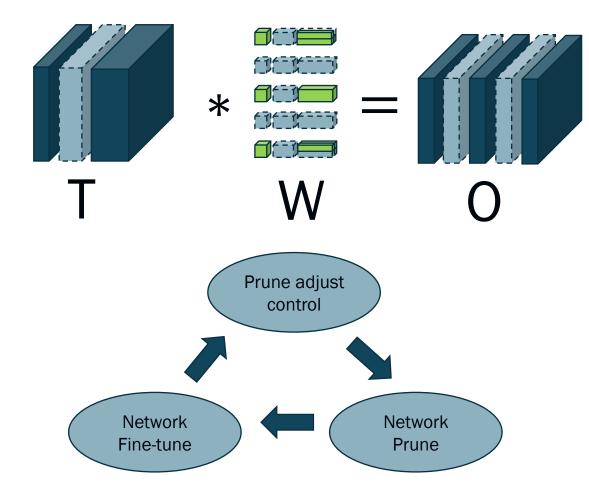
Neural Network Pruning



Purposes of network pruning

- Reduce network size
- Improve inference speed
- Deployed on resource constrained platform

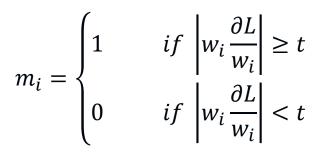
Weight Pruning



Magnitude based:

 $m_i = \begin{cases} 1 & if |w_i| \ge t \\ 0 & if |w_i| < t \end{cases}$

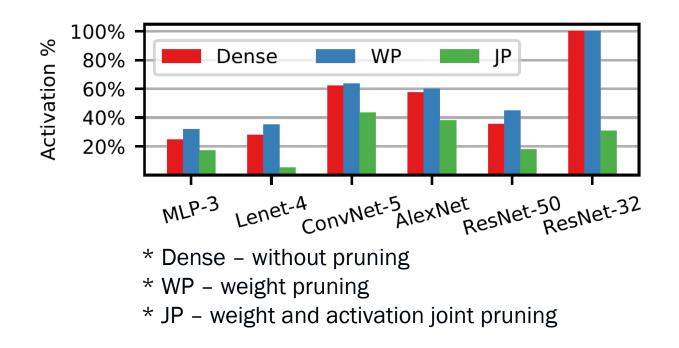
Sensitivity based:



where m is sparsity mask.

Motivations

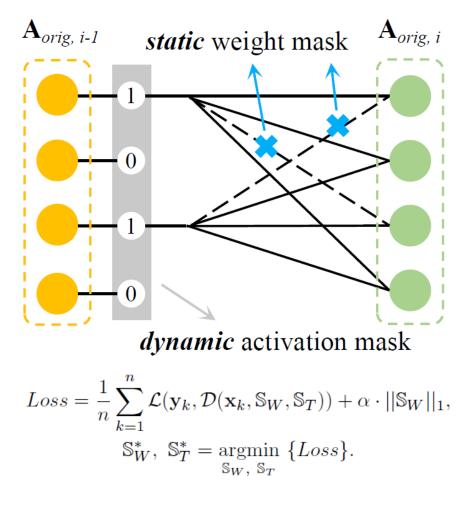
- Activation sparsity could reduce computation as well
- Weight sparsity causes more non-zero activations



Joint Regularization for Weights and Activations

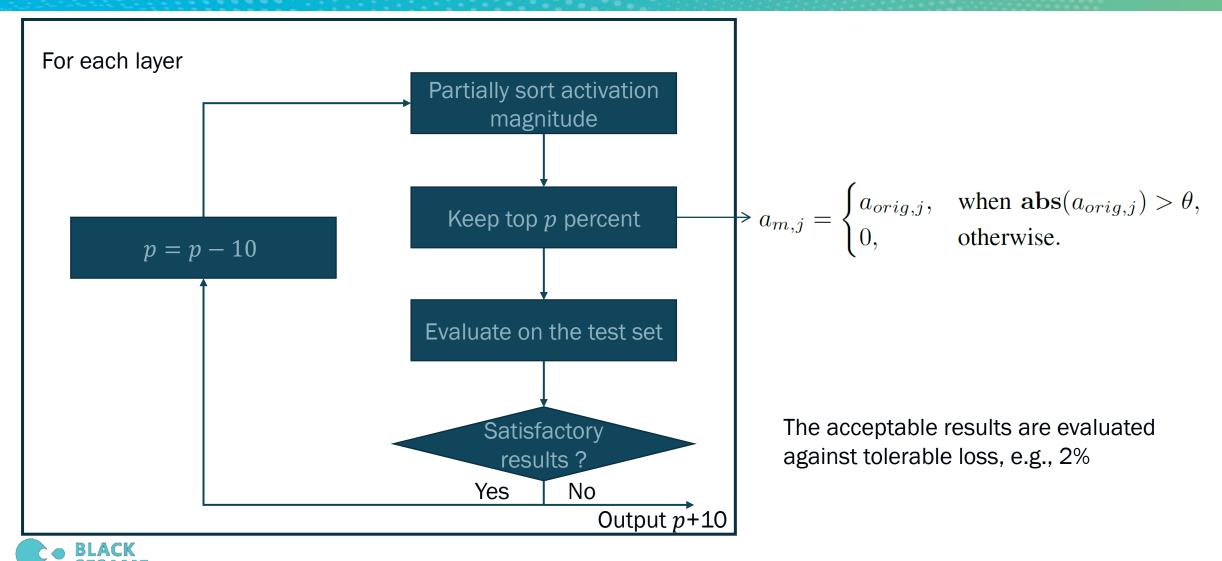
6

Joint Regularization

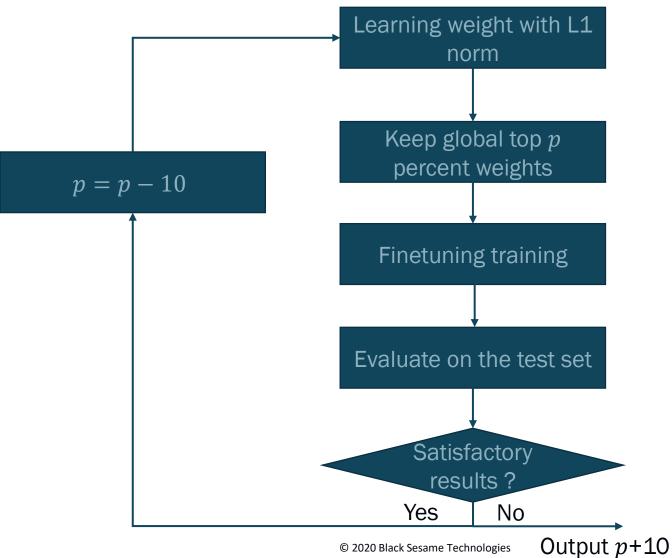


- Use widely adopted ℓ_1/ℓ_2 regularizers to get static weight mask.
- Use projected gradient descent (PGD) method to get dynamic ℓ_0 activation mask.
- The **dynamic** mask keeps the *N* largest elements, while pruning small elements, compared with **static** mask where elements below a given threshold are pruned.

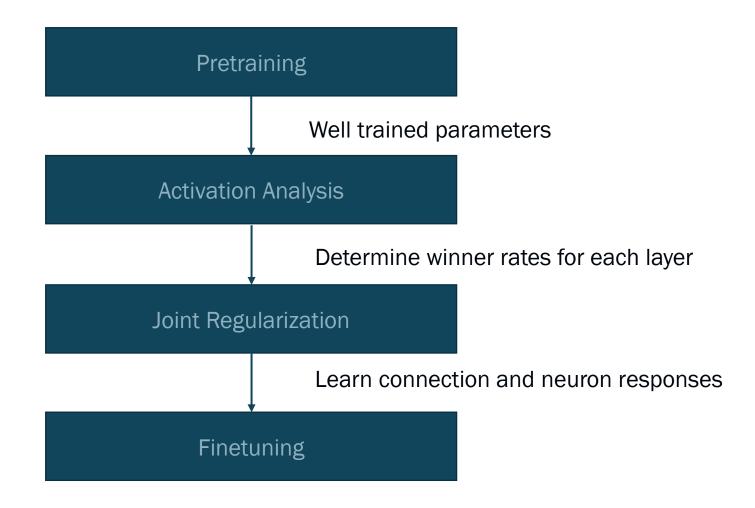
Dynamic Activation Mask



Static Weight Mask



Network Training



embedded VISICN Summit

Compared to the original dense network, within 0.4% accuracy loss:

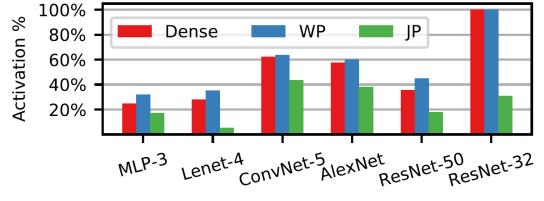
- 1.4x to 5.2x activation compression rate
- 1.6x to 12.3x weight compression rate
- 72.3% to 98.8% MAC reduction

TABLE I Summary of JPnets

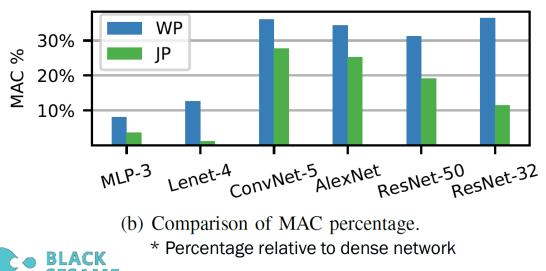
Network	MLP-3	Lenet-4	ConvNet-5	AlexNet	ResNet-50	ResNet-32
Dataset	MNIST	MNIST	CIFAR-10	ImageNet	ImageNet	CIFAR-10
Activation Function	ReLU	ReLU	ReLU	ReLU	ReLU	Leaky ReLU
Accuracy Baseline	98.41%	99.4%	86.0%	57.22%	75.6%	95.0%
Accuracy Joint Regularization	98.42%	99.0%	85.9%	57.26%	75.7%	94.6%
Activation Percentage	17.1%	5.5%	43.6%	37.9%	17.7%	30.8%
Weight Compression Rate	$10 \times$	$12.3 \times$	$2.5 \times$	$5.3 \times$	1.6×	3.1×
MAC Percentage	3.65%	1.2%	27.7%	25.2%	19.1%	11.5%

- Activation Percentage: percentage of non-zero activations
- MAC Percentage: percentage relative to dense network

Compared with Weight Pruning Only



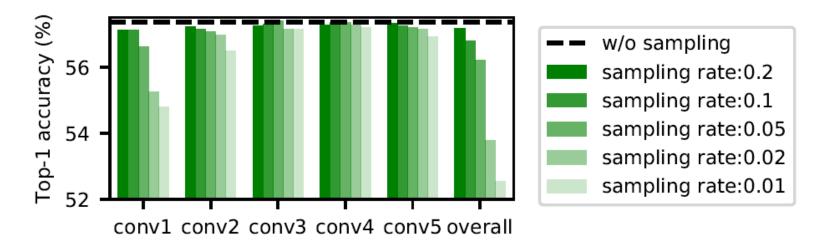
(a) Comparison of non-zero activation percentage.* Percentage relative to total activations



- The weight pruning based on l₁/l₂ regularization tends to increase the non-zero activation percentage compared to the original dense models.
- JP provides a 1.3× ~ 10.5× improvement compared to WP only by remove 7.7% ~ 22.5% more activations.
- JP also works on non-ReLU activation function, like in ResNet-32.

Sampling Rate for Activation Analysis

- The identification of activation pruning threshold could be speeded up by predicting on a down sampled activation set
- The effect of sampling on final accuracy is different for layers
- In the AlexNet example, down sampling 10% is a good compromise

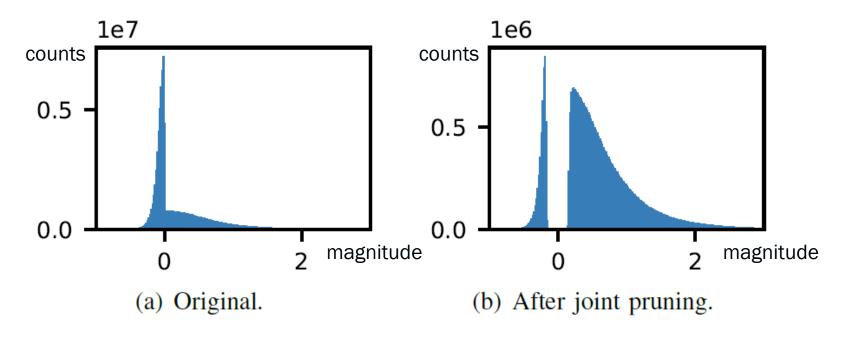


The effects of threshold prediction

embedded

Activation Distribution

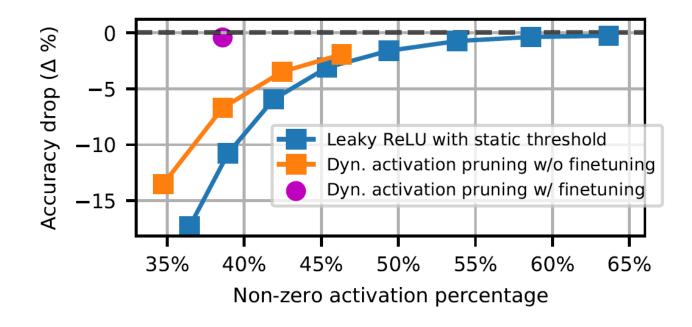
- The activations near zero are pruned out
- The remaining activations have larger magnitude



Activation distribution of ResNet-32

Compared with Static Activation Pruning

- ResNet-32 with leaky ReLU on CIFAR-10 dataset
- Dynamic activation pruning achieves better performance under the same pruning rate



Comparison to static activation pruning for ResNet-32

Comparison with State of Art Weight Pruning Methods

- Compared with LO, VIB and VD, our method can be easily applied to large models
- Compared with DNS/ADMM, we can obtain minimum prediction error with a comparable computation reduction

© 2020 Black Sesame Technologies

Model	Dataset	Method	Weight %	MAC Reduction	Error
Lenet-4	MNIST	L0 VIB VD Ours	8.9% 0.8% 0.4% 8.1%	5.9× 71.4× 80.6× 83.3 ×	0.9% 1.0% 0.8% 1.0%
AlexNet*	ImageNet	DNS ADMM Ours	32.5% 20.5% 38.7%	3.7× 3.8 × 3.7×	20% 19.8% 19.6%

COMPARISON WITH THE STATE-OF-THE-ART WEIGHT PRUNING METHODS.

* For AlexNet, we focus on *conv* layers which are the computation bottleneck for inference. The top-5 prediction error is reported in the table.

* Weight % represents percentage of weights after pruning

BLACK
 SESAME

• LO: l_0 regularization

- VIB: variational information bottleneck
- VD: variational dropout
- **DNS**: dynamic network surgery
- ADMM: non-convex problem
 optimization method

Conclusion

- This work presents a joint regularization algorithm for network pruning, which prunes not only weights but also activations
- Overall, joint regularization outperforms weight only pruning, pointing a promising direction to further network compression
- The model derived from joint regularization requires dedicated DNN accelerators to take the full advantage of the sparsity

Resources

Paper link:

https://arxiv.org/abs/1906.07875

Company website:

http://www.bst.ai/

