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Enable “Small Data” for Learning through SFobedded

Integration of Physical Understanding | gd?n'mlrt‘

Mobile Sensors Static Sensors

= Deploy different
sensors everywhere
to collect data

* Challenges

 Difficult to deploy
and maintain
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Enable “Small Data” for Learning through T

Integration-of Physical Understanding : \s/d?n'mlrt‘ |

Mobile Sensors Static Sensors

= Using the building as
the physical sensor

* Reduces sensor
maintenance

= Challenges
* More variability

* Capture a lot of
activities

Carnegie Mellon University
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Enable “Small Data” for Learning through SBbedded

Integration of Physical Understanding YR

[ A Priori Information ] 1. Optimize SenSing
v ¥ through sensor
s e N ) hardware adaptation.
> Optimize Integrate Adapt 2. Integrate physical
* | sensing || Physical Data models to offset data
: Modeling Models needs
3. Adapt data models
_ "0/——0~ . S s 7 ¥ 7 using the physical
T_[ Model Enabled Hybrid j understanding to
Sensing updates Learning transfer data from
v | different applications
Carnegie Mellon University Understanding
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Buildings as Sensors “VISI N
~osummit

= Detect footsteps vs. non-footsteps

* 99+% Accuracy

* A straightforward classification

T problem?
Carnegie Mellon University
Electrical & Computer Engineering © 2020 Carnegie Mellon University 7




2020
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What Happens in Different Buildings? VISI N
summit

63% accuracy => Structure-dependent vibration signal characteristics

Structure Effect

4
/Y = Hp X

Vibration Freq Response \
Excitation Effect

Need to calibrate/train data in every building!

Carnegie Mellon University
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How Can We Minimize Training? VISI N
summit

Question: How do we reduce the amount of labeled training data needed?
Our Solution: Structure-Informed Model Transfer

Source Structures Target Structures

Model Transfer

)

Available Labelled Data No Labelled Data

Carnegie Mellon University
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embedded

How Can We Minimize Training?

summit

Our Solution: Structure-Informed Model Transfer

%%'Efﬁ &tructure Data

Target Structure Data

Carnegie Mellon University
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embedded

How Can We Minimize Training? |
summit

Our Solution: Structure-Informed Model Transfer

- We look for projection with lower structural effect.

A 4

W
Projection Matrix
Low Structural Effect

i.e. building structures has
reduced effect on the signal

Carnegie Mellon University
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embedded

How can we minimize training? VISI N
summit

Our Solution: Structure-Informed Model Transfer

- Write in the form of transductive component analysis.

.@Hﬁyyﬂf‘{w y,

Structural Effect Regularization Term Distribution Shape
Preserving

Label Information

* Derived from Physical equations => Interpretable
Carnegie Mellon University
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Footstep Detection Evaluation VISl N
summit

0.96 0.97 0.99

Il TD-based (w/o transfer)
Il FD-based (w/o transfer)
| I Our Approach (w transfer)

Non-carpeted-concrete
slab on grade

Baptist Porter Vincentian

e 9.25X, 9.7X, and 29X reduction in error for TD-based

i %« 7.5X, 8X, and 16X reduction in error for FD-based
Baptist Nursing'Home

Carpeted wooden-floox

Carnegie Mellon University
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Example Application:
Using Structure Vibrations to Identify People




.. Sobedded
Example: Identification VISI N
| summlt
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People walk differently i}mlgaldd@i’(\1

summit

Person A

100
frequency (Hz)
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Same Person Walks the Same

2020

embedded

Summit

Carnegie Mellon University
Electrical & Computer Engineering

Trace 1

Trace 2

Trace 3
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Hardware for Human-Induced Floor Vibration VISI N
summit

Building Occupant Monitoring Box

Processor

4 Hardware Versions
- Increase sensitivity (dynamic sensing range)
- Optimize settings for maximum signal resolution
- Reduce structural variation

Carnegie Mellon University
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Identify: Evaluation Results VISI N
summit
* 10 people
» 10 traces per person
« SVM
 Single sensor in hallway
1 T T — ———— %
n-ﬂ/ ' ' :
En-ﬁ/
E.:D.d-
ol " baseline trace lovel acouracy|
o 2 3 2 5 5 7 8 9

Number of Trace for Training

» Step level identity classification reaches 90%
 Trace level identity classification reaches 99%

Carnegie Mellon University
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Building as Sensor Summary VISI N
summit

Person Characteristics
‘.llllll llll.l.LJ.L N

""vr([ [wrrrr » Inference using footstep vibration
T * |dentity, Balance, Muscular Dystrophy, Dementia, etc.
Identlty/ « Performance: 99% identity
Characteristics

Inference of Location
« |dentify and infer location of walkers and devices
@ » Multi-Source Separation (Multi-walkers)
* Inference using footstep and sequence events Performance: ~0.2m

Location

Machine Learning with Physical Knowledge

» Transfer models through physical understanding (buildings, persons,
environments)

Learning * Interpretable learning through physical models

Carnegie Mellon University
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Enable “Small Data” for Learning through SBbedded

Integration of Physical Understanding YR

[ A Priori Information ] 1. Optimize SenSing
v ¥ through sensor
s e N ) hardware adaptation.
> Optimize Integrate Adapt 2. Integrate physical
* | sensing || Physical Data models to offset data
: Modeling Models needs
3. Adapt data models
_ "0/——0~ . S s 7 ¥ 7 using the physical
T_[ Model Enabled Hybrid j understanding to
Sensing updates Learning transfer data from
v | different applications
Carnegie Mellon University Understanding
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Ongoing Deployment

Carnegie Mellon University
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Eldercare deployment

Walk balance
Activity monitoring
Vital monitoring
Fall prediction
Stroke recovery

QQ VINCENTIAN

COLLABORATIVE SYSTEM
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Select Real-world Deployments -

- ViER

Mobile Sensing

Building as Sensors

Carnegie Mellon University
Electrical & Computer Engineering

© 2020 Carnegie Mellon University

~sufmmit

Research Competitions
* @CPS-loT Week

Data for the research
community

3 Startups

ZebraNet: first mobile
sensor net

Autonomous retail stores
in 5 countries

600 million pollution data
collected on 500,000 km
taxi traces

Extended life expectancy
for children with LGMD by
50% => 10 years.
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Collaborators and Funders VISI N

summit

 Ph.D. Students Electrical engineering

— Adeola Bannis —  Prof. John Shen (CMU) le
~ Amelie Bonde ~ Prof anLane (cMU) (;008 AIF]
—  Prof. Bob lannucci (CMU)

—  Prof. Lin Zhang (Tsinghua)
—  Prof. Shijia Pan (UC Merced)

— Jonathon Fagert
— Joao Diogo Falcao

— Jesse Codling e  Civil Engineering:

* Past Ph.D. —  Prof. Hae Young Noh (Stanford) BETAGRO
— Aveek Purohit —  Prof. Mario Berges (CMU)
—  Zheng Sun * Robotics °
—  Frank Mokaya —  Prof. Stefano Carpin (UC Merced) > q = “ t raff i C21
—  Xinlei Chen * Computer Science I n tel s Sareposiion assardiftiv o Exmogie Wdton sty
—  Shijia Pan —  Prof. Jorge Sa Silva (U Coimbra) cience forachanging world

—  Prof. Lizhong Zheng (MIT)

) . —  Prof. Margaret Martonosi
— Carlos Ruiz Dominguez (Princeton)

— Mostafa Mirshekari Government/Industry/Medical
— Dr. Linda Lowes (Nationwide

Children’s Hospital)
—  Dr. Trevor Pering (Google) “GHMAR W
—  Dr. Eve Schooler (Intel) K H |] ME S NDKIA

Mr. Ray Washburn (Vincentian)

- Brian Sadler (Army ResearCh@B@@O Carnegie Mellon University
—  Steve Gu (AiFi)

— Susu Xu

4 Q"Q VINCENTIAN

43 NATIONWIDE CHILDREN'S R

When your child needs a hospital, everything marters.
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Papers and Resources on Structure as Sensors VIS N
Identification Localization

Pan, S., Yu, T., Mirshekari, M., Fagert, J., Bonde, A., Mirshekari, M., Pan, S., Fagert, J., Schooler, E. M., Zhang, P., & Noh, H.
Mengshoel, O. J,, ... & Zhang, P. (2017). Footprintid: Y. (2018). Occupant localization using footstep-induced structural

Indoor pedestrian identification through ambient vibration. Mechanical Systems and Signal Processing, 112, 77-97.

strtljctural \(lbral'c\l/lonbg,lenwg. PLc;ceeddeg;'of"che ACM Mirshekari, M., Pan, S., Zhang, P., & Noh, H. Y. (2016, April).

.?Qchn:glrgcfé\;e’l(;)) 1'_%’1 €arable an quitous Characterizing wave propagation to improve indoor step-level person
81€s, ! ' localization using floor vibration. In Sensors and Smart Structures

Han, J., Pan, S., Sinha, M. K., Noh, H. Y., Zhang, P., & Technologies for Civil, Mechanical, and Aerospace Systems 2016 (Vol.

Tague, P. (2018). Smart home occupant 9803, p. 980305). International Society for Optics and Photonics.
|der)t|f|cat|on via sensor fusion across on-object Mirshekari, M., Fagert, J., Pan, S., Zhang, P., & Noh, H. Y. (2020). Step-
devices. ACM Transactions on Sensor Networks Level Occupant Detection across Different Structures through
(TOSN), 14(3-4), 1-22. Footstep-Induced Floor Vibration Using Model Transfer. Journal of
Pan, S., Wang, N., Qian, Y., Velibeyoglu, I., Noh, H. Y., Engineering Mechanics, 146(3), 04019137.

& Zhang, P. (2015, February). Indoor person Structure as Sensors in Popular Media

identification through footstep induced structural

vibration. In Proceedings of the 16th International Scientific American: Footstep Sensors Identlfy PeOple by Gait
Workshop on Mobile Computing Systems and https://www.scientificamerican.com/article/footstep-sensors-
Applications (pp. 81-86). identify-people-by-gait/
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