

Reinforcement Learning: A Practical Introduction

Orions Systems

Joe Booth
Orions Systems, Inc / Microsoft
September 2020

About Orions Systems Inc

2

Distributed, **Hierarchical**, **AI and human compute**, video analytics platform for enterprise and intelligence agencies.

- v1: 100% human compute to annotate sports in near real time
 - Distributed = many humans in parallel
 - Hierarchical = tag start/end of play-> label play, touches -> intent (forced/unforced error)
 - 100k games per year
- v2 added AI and human compute
 - Automated training data, real time QA
 - Supports scenarios beyond today's AI capabilities

Acquired by Microsoft, July 2020

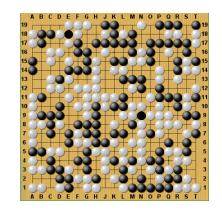
Team, tech joined Dynamics Connected Store group

Introduction to Reinforcement Learning (RL)

RL vs. Supervised, Un-/semi-supervised Learning

- 1. RL = an agent *actively searching* a dataset
 - The agent's action at timestep t, impacts observations at future timesteps
 - ... In chess, each action changes the environment
 - ... In multi-armed bandit, each action changes the information we have about the environment
- 2. RL is for searching truly massive search spaces

Go has more valid states than atoms in the universe.



Examples of Real-world Deployments

Self driving (Wayve, etc.)

Industrial Control (Microsoft, Google, etc)

Robotics (Covariant, etc.)

+ Financial Tech

+ Search

+ Route Optimization

Technical Overview of Reinforcement Learning

Technical Overview of RL

•••

Deep Learning

ApproximationMethods

Tabular Methods

Technical Overview of RL

Deep Learning

•••

ApproximationMethods

Tabular Methods

- Multi-arm bandits
- Dynamic Programming
- Markov Decision Process
- TD-Learning, Bootstrapping
- Planning

Multi-armed Bandits

... payout %

... payout %

... payout %

Don't know payout ratio.

Each action costs \$1

Exploration = search (choose a random arm) vs

Exploitation = choose best arm

Multi-armed Bandits

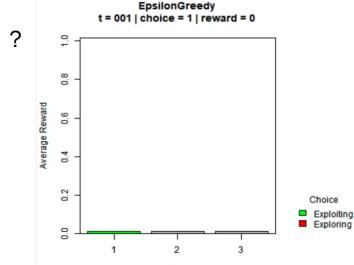
Don't know payout ratio.

Each action costs \$1

Exploration = search (choose a random arm)

٧S

Exploitation = choose best arm



Epsilon Greedy

Example: e=0.1

If random value > e, Exploit else Explore

Note: Used in DQN and many RL algos

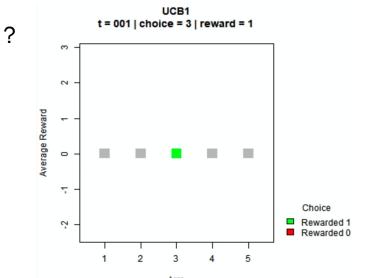
Multi-armed Bandits

Don't know payout ratio.

Each action costs \$1

Exploration = search (choose a random arm) vs

Exploitation = choose best arm



Upper Confidence Bounds

Choose arm with highest potential return (based on confidence)

or Random If 2+ arms have same score

Note: Used in AlphaZero / MuZero

© 2020 Orions Systems Inc

Finite Markov Decision Processes

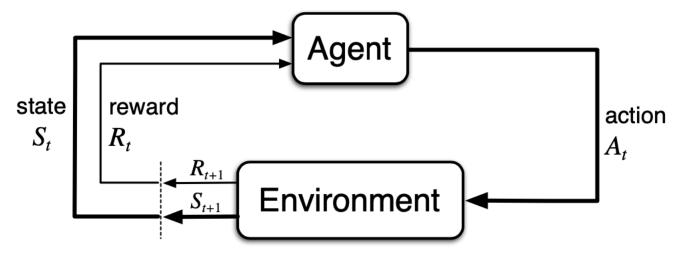


Figure 3.1: The agent–environment interaction in a Markov decision process.

Finite Markov Decision Processes – Blackjack

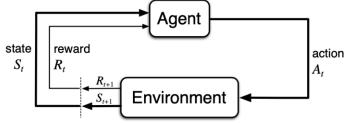


Figure 3.1: The agent-environment interaction in a Markov decision process.

Finite Markov Decision Processes – Blackjack

200 States:

Player Hand 12 to 21
Dealer Showing A to 10
Player Ace / No Ace
= 10x10x2

2 Actions: Hit or Stick

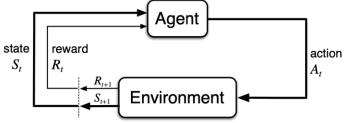
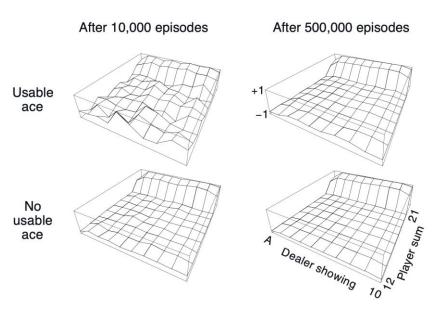


Figure 3.1: The agent–environment interaction in a Markov decision process.

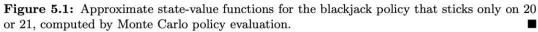
Finite Markov Decision Processes – Blackjack



200 States:

Player Hand 12 to 21
Dealer Showing A to 10
Player Ace / No Ace
= 10x10x2

2 Actions: Hit or Stick



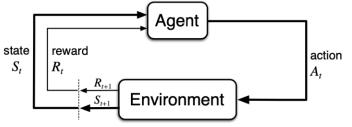
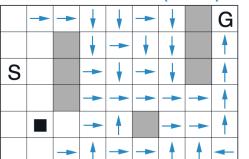
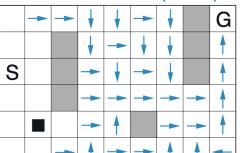


Figure 3.1: The agent–environment interaction in a Markov decision process.

Rich body of academic work spanning ~40 years

- Monte Carlo Methods
- TD Learning
- n-step Bootstrapping
- **Planning** and Learning
 - Dyna:
 - Monte Carlo Tree Search





Dyna – learns in real time

Technical Overview of RL

17

•••

Deep Learning

- DQN / Atari Deep Learning
- AlphaZero self play
- AlphaStar(craft)/ OpenAl Five scale

ApproximationMethods

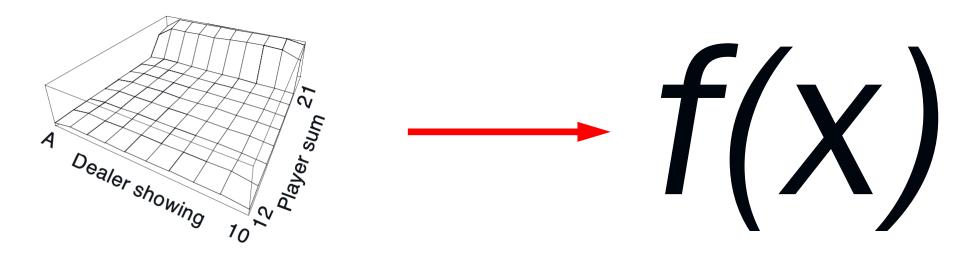
- Value Function Methods
- On-Policy vs Off-Policy
- Policy Gradient & Actor-Critic Methods
- Nonlinear Function Approximation

Tabular Methods

- Multi-arm bandits
- Dynamic Programming
- Markov Decision Process
- TD-Learning, Bootstrapping
- Planning

© 2020 Orions Systems Inc

How to deal with large state spaces:



Why Tabular to Function Approximation?
#1 Intractability / memory
#2 Samples needed to fill large tables

Rich body of academic work spanning ~40 years

- Value Function Methods
- Policy Gradient Methods
- Actor-Critic Methods
- Nonlinear Function Approximation (Deep RL)

Nonlinear Function Approximation – DQN Atari

Network:

32 filters of 8 x 8, stride 4 64 filters of 4 x 4, stride 2 64 filters of 3 x 3, stride 1 512 fc 4 actions

Experience Replay: State, action, reward. Size = 1,000,000

States:

 $84 \times 84 \times 4 = 28,224$

4 Actions:

NoOp, Fire, Left, Right

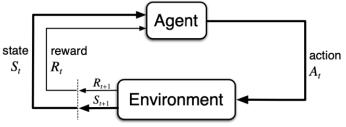
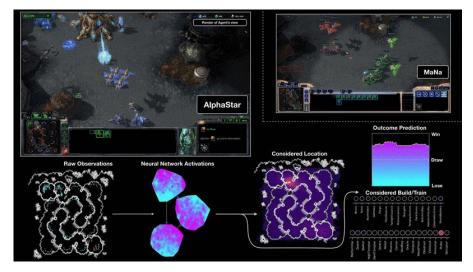


Figure 3.1: The agent–environment interaction in a Markov decision process.

Model Free

- OpenAl Five
- AlphaStar



Model Based

AlphaZero

Technical Overview of RL

22

- •••
- MuZero planning without access to dynamics
- SuperDyna approximation + partial observability + temporal abstraction + non-stationary

Deep Learning

- DQN / Atari Deep Learning
- AlphaZero self play
- AlphaStar(craft)/ OpenAl Five scale

ApproximationMethods

- Value Function Methods
- On-Policy vs Off-Policy
- Policy Gradient & Actor-Critic Methods
- Nonlinear Function Approximation

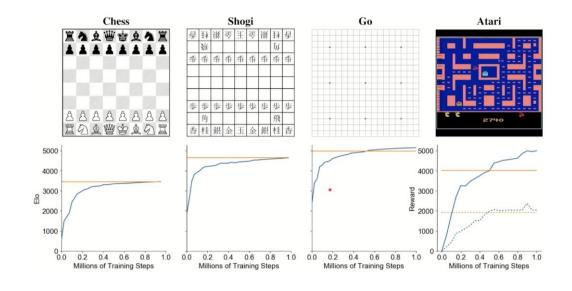
Tabular Methods

- Multi-arm bandits
- Dynamic Programming
- Markov Decision Process
- TD-Learning, Bootstrapping
- Planning

© 2020 Orions Systems Inc

Problem with Model Based

- We need the model AlphaZero has the simulation of chess, Go, etc
- How could we do this for Atari?

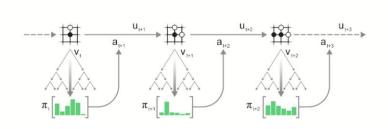


Answer: MuZero, (Schrittwieser, et. El. 2019)

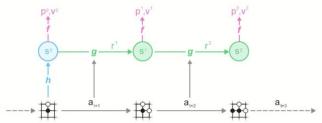
Planning with a Learned Model

representation $s^0 = h_\theta(o_1,...,o_t)$ prediction $p^k, v^k = f_\theta(s^k)$ dynamics $r^k, s^k = g_\theta(s^{k\cdot 1}, a^k)$

Generate trajectories according to MCTS



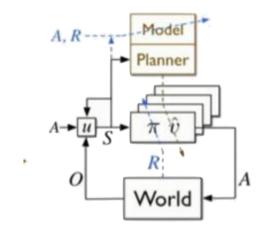
Update the learned model towards the MCTS



World is much bigger than Agent

Proposed solution: SuperDyna (working title) Rich Sutton 2019

 Learns subproblems, learns solutions (policies), learns state features, learns models of the world



How to Structure Problems to Use Reinforcement Learning Effectively

Example RL Problem

Camera on Edge device: \$\$\$ service (say person detection)

Goal: minimize cost don't request same person twice don't miss person

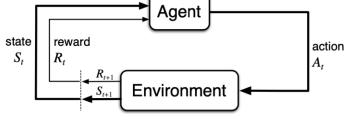


Figure 3.1: The agent-environment interaction in a Markov decision process.

Example RL Problem

Camera on Edge device: \$\$\$ service (say person detection)

Goal: minimize cost don't request same person twice don't miss person

States: 7,056 x n

84 x 84 x n

n=number of history frames

2 Actions: Skip, Send

Reward:

- +1 new person,
- -0.1 same person, no one
- -1 missed person

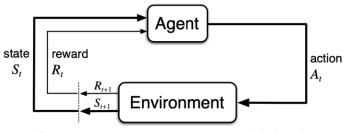


Figure 3.1: The agent–environment interaction in a Markov decision process.

Example RL Problem

Camera on Edge device: \$\$\$ service (say person detection)

Goal: minimize cost don't request same person twice don't miss person

States: 2 x n % change x n

n=number of history frames

+ previous actions

2 Actions: Skip, Send

Reward:

- +1 new person,
- -0.1 same person, no one
- -1 missed person

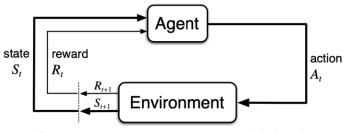


Figure 3.1: The agent–environment interaction in a Markov decision process.

Conclusions

Reinforcement Learning:

- A tool for exploring massive search spaces
- In use today
- Richly researched domain with continued innovation
- May be easier to use than you think

Resource Slide

Courses

Coursera: Reinforcement Learning Specialization (U. Alberta)

coursera.org/specializations/reinforcement-learning

Udacity: Deep Reinforcement Learning

<u>udacity.com/course/deep-reinforcement-learning-nanodegree--nd893</u>

OpenAI: Spinning Up (free)

spinningup.openai.com/en/latest/

Books

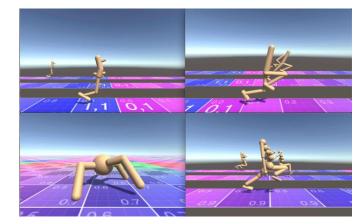
Reinforcement Learning (Sutton & Barto) (free)

incompleteideas.net/book/the-book-2nd.html

Contact Joe

Joe.Booth@Microsoft.com

@iAmVidyaGamer



github.com/Unity-Technologies/marathon-envs

© 2020 Orions Systems Inc