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A perfect storm
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Growing set of requirements: Cost, latency, power, security & privacy

Cambrian explosion of models, 
workloads, and use cases CNN GAN RNN MLP DQNN

Rapidly evolving ML software 
ecosystem

Silicon scaling limitations 
(Dennard and Moore)

Cambrian explosion of HW backends. 
Heterogeneous HW
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Current Dominant Deep Learning 
Systems Landscape
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Frameworks and
Inference engines

DL Compilers

Kernel
Libraries

Hardware

Orchestrators

Azure ML GCP Datalab

cuDNN NNPack MKL-DNN

Open source, automated
end-to-end optimization 

framework for deep learning

Hand optimized
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Stack
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End-to-end, 
framework to metal open 

stack.
Research and deployment.

High-Level Differentiable IR

Tensor Expression IR

LLVM, CUDA, Metal VTA

Edge 
FPGA

Cloud 
FPGA

ASIC

Open source synthesizable deep 
learning accelerator design
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Automated by Machine Learning
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High-Level Differentiable IR

Tensor Expression IR

LLVM, CUDA, Metal VTA

Edge 
FPGA

Cloud 
FPGA

ASIC

TVM: Automated End-to-end Optimizations for Deep Learning. Chen et al. OSDI 18

ML-based
Optimization

AutoTVM

AutoVTA

Hardware Fleet
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End-user perspective: 
Compile & deploy
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import tvm
from tvm import relay

graph, params =
Frontend.from_keras
(keras_resnet50)

graph, lib, params =
Relay.build(graph, target)

Compile Deploy
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Open Source Community 
and Impact
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Open source: ~420+ contributors from UW, Berkeley, Cornell, UCLA, Amazon,  Huawei, NTT, Facebook, Microsoft, 
Qualcomm, Alibaba, Intel, …

Incubated as Apache TVM. Independent governance, allowing competitors to 
collaborate.

Used in production at leading companies 

Deep Learning 
Compiler Service

DSP/Tensor engine 
for mobile 

Mobile and Server
Optimizations 

Cloud-side model 
optimization
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Existing Deep Learning Frameworks
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Frameworks

Hardware

Primitive Tensor operators such as 
Conv2D

High-level data flow graph

Offload to heavily optimized DNN operator 
library

eg. cuDNN
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Engineering costs limits progress
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cuDNN Engineering intensive

New operator introduced by operator fusion optimization potential 
benefit: 1.5x speedup

Frameworks
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Our approach: Learning-based Learning System
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Frameworks

Hardware

Directly generate optimized program
for new operator workloads and hardware

High-level data flow graph and optimizations

Machine Learning based Program Optimizer
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Tensor Compilation/Optimization as a 
search problem
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Tensor Expression (Specification)

C = tvm.compute((m, n), 

lambda y, x: tvm.sum(A[k, y] * B[k, x], axis=k))

Search Space of Possible Program Optimizations

Low-level Program Variants
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Search Space Example (1/3) 
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Search Space of Possible Program Optimizations

Vanilla Code

Tensor Expression (Specification)

C = tvm.compute((m, n), 

lambda y, x: tvm.sum(A[k, y] * B[k, x], axis=k))
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Search Space Example (2/3) 
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Search Space of Possible Program Optimizations

Loop Tiling for Locality

Tensor Expression (Specification)

C = tvm.compute((m, n), 

lambda y, x: tvm.sum(A[k, y] * B[k, x], axis=k))
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Search Space Example (3/3) 
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Search Space of Possible Program Optimizations

Map to Accelerators

Tensor Expression (Specification)

C = tvm.compute((m, n), 

lambda y, x: tvm.sum(A[k, y] * B[k, x], axis=k))
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Optimization space is really large…
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Loop Transformations
Thread

Bindings
Cache

Locality

Thread Cooperation Tensorization
Latency
Hiding

Typically explored via human intuition. 
How can we automate this? Auto-tuning is too slow. 

Billions of possible
optimization
choices

Tensor Expression (Specification)

C = tvm.compute((m, n), 

lambda y, x: tvm.sum(A[k, y] * B[k, x], axis=k))
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Problem Formalization
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Search Space

Expression

Objective

Code Generator

Optimization
Configuration

Cost:
Execute Time

Program

AutoOpt
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Black-box Optimization
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Challenge: Lots of experimental trials, each trial costs ~1 second

Code Generator

Try each configuration     until we find a good one

Search Space

Expression AutoTVM
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Cost-model Driven Approach
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Search Space

Expression AutoOpt

Challenge: Need reliable cost model per hardware

Use cost model to pick configuration

Code Generator

Cost Model
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Statistical Cost Model
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Search Space

Expression AutoOpt Code Generator

Our approach: Use machine learning to learn a statistical cost model

Statistical
Cost Model

Learning

Training data

Benefit: Automatically adapt to hardware type Important: How to design the cost model
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Search
Space

Expression2

2 AutoTVM

Shared
Cost Model

Code
Generator

New Tasks

Historical data from related operators 
(tasks)

Need task invariant

representation

Transfer learning

AutoTVM Overview
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Conv2D

Matmul

O(microseconds) inference vs. O(seconds) execution

Search
Space

Expression AutoTVM
Code

Generator

Statistical
Cost Model

Learning

Training data

High-level
configurations

Low-level
Abstract Syntax Tree 

(AST)

Benefit: Low-level AST is a common representation (General, task 
invariant)

Your favourite model

Statistical features 
of AST

+ +

Learning to Optimize Tensor Programs. Chen et al. NeurIPS 18
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Does it work?
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Better than hand-tuned code in a few minutes

1.50x faster than hand-tuned in steady state 

AutoTVM + transferred model

3x to 10x faster tuning w/ transfer 
learning



© 2020 OctoML and University of Washington

Device Fleet: Distributed Test Bed for AutoTVM
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Resource 
Allocation

Resource 
Token

Resource Manager (Tracker)

Nvidia GPU Server

RPC RT CUDA

Android Phone

RPC RT OpenCL

Zynq FPGA Board

RPC RT Bitstream

AutoTVM
Experiment 1

AutoTVM
Experiment 2

Persistent Remote Session

Scale up optimization
Resource sharing

…
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State-of-the-art performance
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Nvidia Titan X ARM GPU (MALI)ARM CPU 
(Cortex-A53)

Key point: TVM offers good performance with low manual effort
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End-to-end, 
framework to metal open 

stack.
Research and deployment

High-Level Differentiable IR

Tensor Expression IR

LLVM, CUDA, Metal VTA

Edge 
FPGA

Cloud 
FPGA

ASIC

Open source synthesizable deep 
learning accelerator design

Stack
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DL Accelerator Design Challenges
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CNN

GAN

RNN

MLP

DQNN

• Keeping up with algorithmic changes

• Finding the right generality/efficiency trade-off

• Enable a “day-0” software stack on top

• (VTA: two-level ISA, templatized design)

• (VTA: templatized design + HW parameter search)

• (VTA: tight coupling with TVM)
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VTA: 
Open & Flexible Deep Learning Accelerator
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Current TVM Stack

VTA Runtime & JIT Compiler

VTA MicroArchitecture VTA Simulator

VTA Hardware/Software Interface (ISA)

• Move hardware complexity to 
software via a two-level ISA 

• Runtime JIT-compile 
accelerator micro code

• Native support in TVM

• Support heterogenous devices 
(split graph)

• Support for secure execution 
(soon)
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VTA Open Source Deep Learning accelerator
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• Decoupled access-execute with explicit software control
• Two-level ISA: JIT breaks multi-cycle “CISC” instructions into micro-ops

• Enables model retargeting without HW changes
• Focused on FPGA deployments so far. Exploring custom silicon 

possibilities 

Note: HW-SW Blueprint for Flexible Deep Learning Acceleration. Moreau et al. IEEE Micro 2019.

Template
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µTVM - Bare-metal model deployment for edge 
devices
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Optimize, compile and package model for standalone bare metal 
deployment 

See recent demo on TVM for Azure Sphere deployment. 

µTVMML model

Optimized 
model

Optimized 
operators

Standalone 
runtime

Edge device board 
(ARM, MIPS, RISC-
V,...)

Flash code
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Coming Soon - Ultra low bit-width quantization

Automatic quantization: 5-20x 

performance gains with reasonable 

accuracy loss.

TVM supports flexible code 

generation for a variety of data 

types

Squeezenet on RaspberryPi 3
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What about training?
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• Direct support for training in Apache TVM 
coming soon!

• Automatic generation of gradient programs 

• Support for customized data types and training 
on FPGAs

High-Level Differentiable IR

Tensor Expression IR

LLVM, CUDA, Metal VTA

Edge 
FPGA

Cloud 
FPGA

ASIC

Standalone training deployment

Standalone inference deployment

Gradient Program for Training 

Automatic Differentiation
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Other Ongoing TVM efforts
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• Autoscheduling (Zheng et al. OSDI’20 @ UCBerkeley)

• Automatic synthesis of operator implementations (Cowan et al. CGO’20 @ UWash)

• Sparse support (NLP, graph convolutional neural networks, etc…)

• Secure enclaves

• …

• Join the community!



© 2020 OctoML and University of Washington

https://tvm.ai
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2nd TVM conference on Dec 5, 2019. 200+ ppl last year!

• Video tutorials
• iPython notebooks tutorials

3rd TVM conference on Dec 3/4, 2020. https://tvmconf.org

https://tvm.ai/
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https://octoml.ai
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What I would like you to remember…
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TVM is an emerging open source standard for ML compilation and optimization

TVM offers

• Improved time to market for ML

• Performance

• Unified support for CPU, GPU, Accelerators

• On the framework of your choice

OctoML is here to help you succeed in you ML deployment needs

End-to-end, 
framework to 

metal open stack.
Research and 
deployment

High-Level Differentiable IR

Tensor Expression IR

LLVM, CUDA, Metal VTA

Edge 
FPGA

Cloud 
FPGA

ASIC


