Introduction to the'ﬂTVMo’pe\n :
Source.Deep Learning Compiler
Stack e

h d d d w/ Ziheng Jiang,
@ m p p Lianmin Zheng, Eddie Yan, Meghan Cowan, Chien-Yu Lin,
V I I o n Haichen Shen, Leyuan Wang, Yuwei Hu, Carlos Guestrin,

k- Arvind Krishnamurthy, Zach Tatlock, and many in the Apache

summit

2020

embedded
A perfect storm VISI N

summit

Growing set of requirements: Cost, latency, power, security & privacy

Cambrian explosion of models,
workloads, and use cases

Rapidly evolving ML software /5 .

ecosystem ':’ K
L P

Silicon scaling limitations inter) @2 .

(Dennard and Moore) nVIDIA £ XILINX

m " Microsoft QuALcOMWW
Cambrian explosion of HW backends.

Heterogeneous HW

amazon Google)

HUAWEI

© 2020 OctoML and University of Washington 2

Current Dominant Deep Learning Stbedded

Systems Landscape e,

A~
Orchestrators e 3‘6 SELDOWN A%, ALGORITHMIA A 9

Kubeflow
Azure ML GCP Datalab

ONNX ==
RUNTIME L=

Frameworks and
Inference engines

DL Compilers q t
__ 8 (VI
Kernel cuDNN NNPack MKL-DNN
Libraries » Open source, automated
“““ end-to-end optimization
= framework for deep learning
Hardware &

© 2020 OctoML and University of Washington 3

obadded
~summit

High-Level Differentiable IR

End-to-end,
framework to metal open
stack.

VTA Research and deployment.

Tensor Expression IR

LLVM, CUDA, Metal

Edge Cloud
FPGA FPGA

ASIC

Open source synthesizable deep
learning accelerator design

© 2020 OctoML and University of Washington

Sbedded

Automated by Machine Learning VISi'n

High-Level Diff iable IR e
Igh-Level Ditterentiable Optimization

Tensor Expression IR AutoTVM

AutoVTA
7i”e' / | ‘ Edge CIOUd _
L v £ FPGA FPGA
TVM: Automated End-to-end Optimizations for Deep Learning. OSDI 18

5

LLVM, CUDA, Metal

© 2020 OctoML and University of Washington

2020

End-user perspective: Sabedded

Compile & deploy Vd%!m'l?

. module = runtime.create(graph, lib, tvm.gpu(0))
import tvm module.set_input (sx*params)

: module. run(data=data_array)
from tvm |mport relay output = tvm.nd.empty(out_shape, ctx=tvm.gpu(0))
module.get_output(0, output)

graph, params =
Frontend.from_keras
(keras_resnet50)

graph, |Ib, params = |:> Deployable Module
Relay.build(graph, target)

prediction tabby, tabby cat

© 2020 OctoML and University of Washington 6

2020

Open Source Community Soedded

and Impact - \S/LII%ImTt‘ |

Open source: ~420+ contributors from UW, Berkeley, Cornell, UCLA, Amazon, Huawei, NTT, Facebook, Microsoft,
Qualcomm, Alibaba, Intel, ...

Used in production at leading companies

aWS .
! Q n m Microsoft
Deep Learning DSP/Tensor engine Mobile and Server Cloud-side model
Compiler Service for mobile Optimizations optimization

APACH — Incubated as Apache TVM. Independent governance, allowing competitors to
collaborate.

SOFTWARE FOUNDATION

© 2020 OctoML and University of Washington 7

embedded

Summit

© 2020 OctoML and University of Washington

Existing Deep Learning Frameworks

yleyle]

embedded

summit

— R

® O

eg. CuDNN

o O -

hl
v

High-level data flow graph

Primitive Tensor operators such as

Conv2D

Offload to heavily optimized DNN operator
library

Hardware @

NVIDIA

s

© 2020 OctoML and University of Washington

5 . et embedded
Engineering costs limits progress VISI N
summit

New operator introduced by operator fusion optimization potential
benefit: 1.5x speedup

cuDNN Engineering intensive

0000 Lo B & & B & &
L g @ @ 0

© 2020 OctoML and University of Washington

\<Q
" 1§

<3

NVIDIA

10

2020

embedded

Our approach: Learning-based Learning System VISI N

summit

@

High-level data flow graph and optimizations

Machine Learning based Program Optimizer

(i B S

Directly generate optimized program
for new operator workloads and hardware

A\ 4
Hardware

i |

|

© 2020 OctoML and University of Washington 11

Tensor Compilation/Optimization as a
search problem

Tensor Expression (Specification)

O

C = tvm.compute((m, n),
lambday, x: tvm.sum(A[k, y] * B[k, x], axis=k))

yleyle]

em hpddpd

n
summit

Search Space of Possible Program Optimizations

Low-level Program Variants

l

inp_buffer AL[8]1[8], BL[81[8]
acc_buffer CL[8][8]
for yo in range(128):
for xo in range(128):
vdla.fill_zero(CL)
for ko in range(128):
vdla.dma_copy2d(AL, Al[ko*8:ko*8+8] [yo*8:yo*8+8])
vdla.dma_copy2d(BL, B[kox8:ko*8+8] [x0*8:x0%8+8])
vdla. fused_gemm8x8_add(CL, AL, BL)
vdla.dma_copy2d(C[yo*8:yo*8+8,x0*8:x0o*8+8], CL)

for yo in range(128):
for xo in range(128):

Clyo*8:yo*B8+8] [x0*8:x0+8+8] = @

for ko in range(128):

for yi in range(8):

for xi in range(8):
for ki in range(8):

Clyo*8+yi] [xox8+xi] +=

Alkox8+ki] [yo*8+yil * B[ko*8+ki] [xo*8+xi]

l

for y in range(1024):
for x in range(1024):
Clyl Ix] =
for k in range(1024)'
Clyl [x] += ALkl [yl * BI[k][x]

© 2020 OctoML and University of Washington

12

yleyle]

em hpddpd

Search Space Example (1/3) n

summlt

Tensor Expression (Specification)

.

‘ . C=tvm.compute((m, n),

lambday, x: tvm.sum(A[k, y] * B[k, x], axis=k))

Search Space of Possible Program Optimizations

Vanilla Code

for y in range(1024):

for x 1n
ClylIx.

range(1024)
=0

for k in range(1024):

Cly]

x] += Alkl [yl * B[k][x]

© 2020 OctoML and University of Washington 13

yleyle]

embedded

Search Space Example (2/3)

Tensor Expression (Specification)
+. C = tvm.compute((m, n),

lambday, x: tvm.sum(A[k, y] * B[k, x], axis=k))

Search Space of Possible Program Optimizations

Loop Tiling for Locality

summit

A 4

for yo in range(128):
for xo in range(128):

Clyox8:yox8+8] [x0*8:x0*x8+8] = 0

for ko in range(128):

for yi in range(8):

for xi in range(8):
for ki in range(8):
Clyo*8+yi] [x0o*x8+xi] +=
Al[kox8+ki] [yox8+yi] * B[ko*8+ki] [x0*8+xi]

© 2020 OctoML and University of Washington 14

embedded
Search Space Example (3/3) AN R

Tensor Expression (Specification)

C = tvm.compute((m, n),
lambday, x: tvm.sum(A[k, y] * B[k, x], axis=k))

Search Space of Possible Program Optimizations

Map to Accelerators

O

inp_buffer AL[8]1[8], BLI[81I[8]
acc_buffer CL[8] [8]
for yo in range(128):
for xo in range(128):
vdla.fill _zero(CL)
for ko in range(128):
vdla.dma_copy2d (AL, A[kox8:ko*8+8] [yox8:yox8+8])
vdla.dma_copy2d(BL, B[ko*8:ko*8+8] [x0*8:x0%8+8])
vdla. fused_gemm8x8_add(CL, AL, BL)
vdla.dma_copy2d(C[yox8:yo*x8+8, xo*x8:xo0x8+8], CL)

© 2020 OctoML and University of Washington 15

yleyle]

A e 3 . thpddpd
Optimization space is really large... n

ummlt

Tensor Expression (Specification)

C = tvm.compute((m, n),
lambday, x: tvm.sum(A[k, y] * B[k, x], axis=k))

O

Cache
Locality

Thread

L Transf [o
oop Transformations e

Billions of possible
optimization
choices

Latency

Thread Cooperation Tensorization o
Hiding

Typically explored via human intuition.
How can we automate this? Auto-tuning is too slow.

© 2020 OctoML and University of Washington 16

2020

embedded

Problem Formalization VISI N
summit

Optimization

Configuration Program

Expression AutoOpt

r = g(e,c)

Cost:
Execute Time

Search Space

Objective a,’r'gm’l,nce Se f(g(e, C))

© 2020 OctoML and University of Washington 17

2020

emheddéd'

Black-box Optimization VISI N
summit

Try each configuration C until we find a good one

(& Expression

J(x)

Se Search Space

Challenge: Lots of experimental trials, each trial costs ~1 second

© 2020 OctoML and University of Washington 18

2020

emheddédr

Cost-model -Driven Approach VISI N
summit

Use cost model to pick configuration

(& Expression AutoOpt

Se Search Space Cost Model

Challenge: Need reliable cost model per hardware

© 2020 OctoML and University of Washington 19

2020

4 P emhed‘déd"
Statistical Cost Model VISI N

| summlt'

Our approach: Use machine learning to learn a statistical cost model

(& Expression AutoOpt

C| | fleo

Learnin
Statistical & |

Se Search Space Cost Model) L D |

Training data

Benefit: Automatically adapt to hardware type Important: How to design the cost model

© 2020 OctoML and University of Washington 20

AutoTVM Overview

2020

embedded

Summit

Conv2D

e Expression

¢l 1ieo

Statistical

Search
Se Cost Model

Space

e A

Training data

Transfer learning

Matmul i‘i

New Tasks l

Historical data from related operators
(tasks)

Shared Need task invariant

Cost Model

€2 Expression .
representation

Search
Space

Se, AutoTVM

Learning to Optimize Tensor Programs. Chen et al. NeurIPS 18

© 2020 OctoML and University of Washington

High-level
configurations
l touched outer
memory loop
for y in range(8): ¢ a g |length
for x in range(8): : y |1 .
Clyl[x]=0 y | 6464 64 —»Your favourite model
for k in range(8): x[8i8 64X |8
Cly] [x]+=A[Kk] [y]*B[k] [x] 118 8l k|64
Low-level Statistical features + +
Abstract Syntax Tree of AST
(AST)
Benefit: Low-level AST is a common representation (General, task
invariant)

Task Invariant Time Cost FLEL B
Accuracy
Vanilla Model No Low Medium
Tree-based Model Yes Low Good
Neural Model Yes High Good

O(microseconds) inference vs. O(seconds) execution

21

2020

embedded

Does it work? VISI N
summit

/ AutoTVM + transferred model

1.50 ; <) 1.50
r ~ AutoTVM: o
_— ML-based Model ,——J
2 125 f 1.25 I
2
2 1.00 = 1.00
& ¥~ Baseline: CUDNN R
Q | |'mdl i i ssasssséssssssssmssssssssisssssssssessmsessd] 0 |ed i sssssskssssssssmssssssssisssssasessssannnal
2 0.75 1 0.75 -
F=) L ammasnn .
3 S~ AutoTVM: —— |
o 0.50 - Black-box Optimization 0.50 1
One Conv2D Layer of 0.95 -
0.25 1 esNet18 on Titan X :
0-00 T T T T T T T 0‘00
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
Number of Trials Number of Trials
Better than hand-tuned code in a few minutes 3x to 10x faster tuning w/ transfer
learning

1.50x faster than hand-tuned in steady state

© 2020 OctoML and University of Washington 22

AutoTVM

Experiment 1

AutoTVM
Experiment 2

© 2020 OctoML and University of Washington

2020

emheddédr

State-of-the-art performance VIS N
summit

Backed by cuDNN Special frameworks for the particular hardware platform
W TensorFlow WSS Apache mxnet | IS TVM I TensorFlow Lite ArmComputeLib | I TVM
B TensorFlow-XLA 800.0 12.0 250.0 5.0
7.0 0.9 Competitive on 00,0
] ' 10.0]
6.0- 0.8 | standard models 600.0 200.0 4.0
0.7 _ 8.0 —
5.01 05 3x better on 23000 2150.0 3.0
F a0 : “emerging models EJ400.0 6.0 g
" | 03 F 300.0 a0 F 100.0 201
E 3.01 0.41 200.0 l
e .
03] 20 50.0 1.0
2.0 - 100.0 ’
0.2 0.0 0.0 0.0 0.0
1.0 01 ResNet-18 MobileNet DQN ResNet-18 MobileNet DQN
00 R esNet-18 MobileNet 0 LSTM LM DQN
° ° ° ° ° °

Nvidia Titan X ARM CPU ARM GPU (MALI)
(Cortex-A53)

Key point: TVM offers good performance with low manual effort

© 2020 OctoML and University of Washington 24

2020

em hpddpd L:A"_i
—summ IT

High-Level Differentiable IR

Tensor Expression IR End-to-end,
framework to metal open
stack.

LLVM, CUDA, Metal Research and deployment

@
< FPGA FPGA AL

Open source synthesizable deep
learning accelerator design

1
1
:
1
1
i Edge Cloud
:
1
1
:
1

© 2020 OctoML and University of Washington 25

2020

. embedded
DL Accelerator Design Challenges VISI N

summit

* Keeping up with algorithmic changes RNN
e (VTA: two-level ISA, templatized design) CNN DQNN

* Finding the right generality/efficiency trade-off

Kouanyy3 Adsau3
/aauemm,uad 199y

* (VTA: templatized design + HW parameter search)

* Enable a “day-0” software stack on top
e (VTA: tight coupling with TVM)

© 2020 OctoML and University of Washington 26

VTA:
Open & Flexible Deep Lear

Current TVM Stack

lerato

o

ning Acce

VTA Runtime & JIT Compiler

VTA Hardware/Software Interface (ISA)

= e

__uwip
smiramazon

]
i0 webservices

© 2020 OctoML and University of Washington

r

Move hardware complexity to
software via a two-level ISA

Runtime JIT-compile
accelerator micro code

Native support in TVM

Support heterogenous devices
(split graph)

Support for secure execution
(soon)

27

2020

i embedded
VTA Open Source Deep Learning accelerator VISIE N

summit

Template
INSTRUCTION FETCH MODULE
Tensor Intrinsic
LOAD COMPUTE STORE 32 Hardware Datatype
cMDQ cMD Q cMD Q 8 8
- LD—CMP Q CMP-ST Q 8 . X . 8 vs. 1 mmmm—x
COMPUTE MODULE [T~ 32 <16 x i8> vs. <32 x i4>
LOAD STORE
MODULE MODULE Memory Subsystem
Op Support
CMP—LD Q ST—CMP ﬁ vs.
L. :_. {ADD, MUL, SHL, MAX} vs. {ADD, SHL, MAX}
———[_WEIGHTBUFFER |
* Decoupled access-execute with explicit software control HW / SW Constraints —~ VTA Design Space - VTA Candidate Designs
. Architecture Knobs
* Two-level ISA: JIT breaks multi-cycle “CISC” instructions into micro-ops # PRaMs 5 GEMM Intrinsic: 0. (1,32)x (32.82) ve. 416} x (15.16)
* Enables model retargeting without HW changes S " #of units intensor ALU : .9, 32 vs. 16
* Focused on FPGA deployments so far. Exploring custom silicon < ~ DRAM slocetion between bufters, regleter fle, mcro-op cache
possibilities Model paech size Gireuit Knobs
B = cata types " Gircuit Pipelining: e.g. for GEMM core between [11, 20] stages Needs to pass place & route
channel width L % PLL Frequency Sweeps: e.g. 250 vs. 300 vs. 333MHz _J and pass timing closure

Note: HW-SW Blueprint for Flexible Deep Learning Acceleration. Moreau et al. IEEE Micro 2019.

© 2020 OctoML and University of Washington 28

UTVM: - Bare-metal model deployment for edge SFobedded

: n
devices ummlt

Optimize, compile and package model for standalone bare metal
deployment

Flash code

ML model © UWIVM

Edge device board
(ARM, MIPS, RISC-
v,...)

See recent demo on TVM for Azure Sphere deployment.

© 2020 OctoML and University of Washington 29

2020

Coming-Soon - Ultra low bit-width quantization Sbedded

VIS 1N
summit

Squeezenet on RaspberryPi 3

Automatic quantization: 5-20x 200~ Bitwidth - -140
performance gains with reasonable = 1 Bit .
17.5 - , -120 &
accuracy loss. = 2B - £
2 15.0- mmm 3 Bit i -100 @
S mmm FP32 £
Q 125 - - "E
(% - 80 DJ:
. g 10.0 - 0
TVM supports flexible code 2 60 >
: : © 7.5- - =
generation for a variety of data o » 20 '—é

5 0 _ / - —

types ot 3

'I’ -~ I - 20

llil III Il 0

0.0 -

Layer

© 2020 OctoML and University of Washington

2020

embedded

What about training? VIS N
summit

e Direct support for training in Apache TVM
coming soon!

e Automatic generation of gradient programs

e Support for customized data types and training
on FPGAs

Standalone inference deployment

Standalone training deployment

© 2020 OctoML and University of Washington 31

2020

pmhpddpd

Other Ongoing TVM efforts VISI N

summit

e Autoscheduling (Zheng et al. OSDI’20 @ UCBerkeley)

e Automatic synthesis of operator implementations (Cowan et al. CGO’20 @ UWash)
e Sparse support (NLP, graph convolutional neural networks, etc...)

e Secure enclaves

* Join the community!

© 2020 OctoML and University of Washington 32

2nd TVM conference on Dec 5, 2019. 200+ ppl last year!

Literature

from tvm import rpc, autotvm
Deploy and Integration from tvm.contrib import graph_runtime, util
from tvm.contrib.download import download

Contibute to TVM 3rd TVM conference on Dec 3/4, 2020. https://tvmconf.org

Franuianths Ackad NiacHnane import vta.testing

* Video tutorials
* iPython notebooks tutorials

© 2020 OctoML and University of Washington

33

https://tvm.ai/

yleyle]

embedded

summit

LI b 5

Drive TVM adoption Product: SaaS automation for ML ops Support
Core infrastructure Optimizing, benchmarking, and TVM end users and hardware
and improvements packaging models for deployment vendors

https://octoml.ai

© 2020 OctoML and University of Washington 34

2020

i embedded
What | would like you to remember... VISI N

summit

TVM is an emerging open source standard for ML compilation and optimization

TVM offers

o
Improved time to market for ML 4
End-to-end,
metal open stack.
* Unified support for CPU, GPU, Accelerators

Research and
. > Edge Cloud
* On the framework of your choice @ E (

deployment
FPGA FPGA
OctoML is here to help you succeed in you ML deployment needs

ASIC

OF COMPUTER SCIENCE & ENGINEERING

O O PAUL G. ALLEN SCHOOL
& tv m.ai OCtOM L

© 2020 OctoML and University of Washington 35

