Introduction to the TVM Open Source Deep Learning Compiler Stack

embedded VISIMN Summit

Luis Ceze

w/ Tianqi Chen, Thierry Moreau, Jared Roesch, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan Cowan, Chien-Yu Lin, Haichen Shen, Leyuan Wang, Yuwei Hu, Carlos Guestrin, Arvind Krishnamurthy, Zach Tatlock, and many in the Apache TVM community!

PAUL G. ALLEN SCHOOL of computer science & engineering

A perfect storm

Growing set of requirements: Cost, latency, power, security & privacy

Current Dominant Deep Learning Systems Landscape

embedded VISION Summit

End-to-end, framework to metal open stack. Research and deployment.

Open source synthesizable deep learning accelerator design

Stym Automated by Machine Learning

TVM: Automated End-to-end Optimizations for Deep Learning. Chen et al. OSDI 18

End-user perspective: Compile & deploy

Compile

import tvm from tvm import relay

graph, params =
Frontend.from_keras
(keras_resnet50)

graph, lib, params =
Relay.build(graph, target)

Deploy

module = runtime.create(graph, lib, tvm.gpu(0))
module.set_input(**params)
module.run(data=data_array)
output = tvm.nd.empty(out_shape, ctx=tvm.gpu(0))
module.get_output(0, output)

Stym Open Source Community and Impact

Open source: ~420+ contributors from UW, Berkeley, Cornell, UCLA, Amazon, Huawei, NTT, Facebook, Microsoft, Qualcomm, Alibaba, Intel, ...

Existing Deep Learning Frameworks

Engineering costs limits progress

New operator introduced by operator fusion optimization potential benefit: 1.5x speedup

Engineering intensive

Our approach: Learning-based Learning System

High-level data flow graph and optimizations

Machine Learning based Program Optimizer

Directly generate optimized program for new operator workloads and hardware

Tensor Compilation/Optimization as a search problem

Tensor Expression (Specification)

C = tvm.compute((m, n),

lambda y, x: tvm.sum(A[k, y] * B[k, x], axis=k))

Search Space Example (1/3)

Tensor Expression (Specification)

C = tvm.compute((m, n),

lambda y, x: tvm.sum(A[k, y] * B[k, x], axis=k))

Search Space of Possible Program Optimizations

Vanilla Code

```
for y in range(1024):
    for x in range(1024):
        C[y][x] = 0
        for k in range(1024):
        C[y][x] += A[k][y] * B[k][x]
```

Search Space Example (2/3)

Tensor Expression (Specification)

C = tvm.compute((m, n),

lambda y, x: tvm.sum(A[k, y] * B[k, x], axis=k))

Search Space of Possible Program Optimizations

Loop Tiling for Locality

Search Space Example (3/3)

Tensor Expression (Specification)

C = tvm.compute((m, n),

lambda y, x: tvm.sum(A[k, y] * B[k, x], axis=k))

Search Space of Possible Program Optimizations

Map to Accelerators

```
inp_buffer AL[8][8], BL[8][8]
acc_buffer CL[8][8]
for yo in range(128):
    for xo in range(128):
        vdla.fill_zero(CL)
        for ko in range(128):
            vdla.dma_copy2d(AL, A[ko*8:ko*8+8][yo*8:yo*8+8])
            vdla.dma_copy2d(BL, B[ko*8:ko*8+8][xo*8:xo*8+8])
            vdla.fused_gemm8x8_add(CL, AL, BL)
        vdla.dma_copy2d(C[yo*8:yo*8+8,xo*8:xo*8+8], CL)
```

Optimization space is really large...

Tensor Expression (Specification)

C = tvm.compute((m, n),

lambda y, x: tvm.sum(A[k, y] * B[k, x], axis=k))

Billions of possible optimization choices

> Typically explored via human intuition. How can we automate this? Auto-tuning is too slow.

Problem Formalization

embedded VISION Summit

Objective
$$argmin_{c\in S_e}f(g(e,c))$$

Black-box Optimization

Try each configuration C until we find a good one

Challenge: Lots of experimental trials, each trial costs ~1 second

Cost-model Driven Approach

Use cost model to pick configuration

Challenge: Need reliable cost model per hardware

Statistical Cost Model

Our approach: Use machine learning to learn a statistical cost model

Benefit: Automatically adapt to hardware type

Important: How to design the cost model

AutoTVM Overview

Conv2D

O(microseconds) inference vs. O(seconds) execution

Learning to Optimize Tensor Programs. Chen et al. NeurIPS 18

Does it work?

Better than hand-tuned code in a few minutes

1.50x faster than hand-tuned in steady state

3x to 10x faster tuning w/ transfer learning

Device Fleet: Distributed Test Bed for AutoTVM

State-of-the-art performance

Special frameworks for the particular hardware platform

Key point: TVM offers good performance with low manual effort

embedded VISION Summit

Tensor Expression IR

End-to-end, framework to metal open stack. Research and deployment

DL Accelerator Design Challenges

- Keeping up with algorithmic changes
 - (VTA: two-level ISA, templatized design)
- Finding the right generality/efficiency trade-off
 - (VTA: templatized design + HW parameter search)

- Enable a "day-0" software stack on top
 - (VTA: tight coupling with TVM)

GAN MLP RNN DQNN Petter Performance

More General/Programmable

VTA: Open & Flexible Deep Learning Accelerator

Current TVM Stack

VTA Runtime & JIT Compiler

VTA Hardware/Software Interface (ISA)

<section-header><section-header>VTA MicroArchitectureVTA SimulatorImage: Description of the second descriptio

- Move hardware complexity to software via a **two-level ISA**
- Runtime JIT-compile
 accelerator micro code
- Native support in TVM
- Support heterogenous devices (split graph)
- Support for secure execution (soon)

VTA Open Source Deep Learning accelerator

- Decoupled access-execute with explicit software control
- Two-level ISA: JIT breaks multi-cycle "CISC" instructions into micro-ops
 - Enables model retargeting without HW changes
- Focused on FPGA deployments so far. Exploring custom silicon possibilities

Note: HW-SW Blueprint for Flexible Deep Learning Acceleration. Moreau et al. IEEE Micro 2019.

Template

μTVM - Bare-metal model deployment for edge devices

Optimize, compile and package model for standalone bare metal deployment

See recent demo on TVM for Azure Sphere deployment.

Coming Soon - Ultra low bit-width quantization

embedded VISION Summit

Squeezenet on RaspberryPi 3

Automatic quantization: 5-20x performance gains with reasonable accuracy loss.

TVM supports flexible code generation for a variety of data types

What about training?

Standalone inference deployment

- Direct support for training in Apache TVM coming soon!
- Automatic generation of gradient programs
- Support for customized data types and training on FPGAs

Other Ongoing TVM efforts

- Autoscheduling (Zheng et al. OSDI'20 @ UCBerkeley)
- Automatic synthesis of operator implementations (Cowan et al. CGO'20 @ UWash)
- Sparse support (NLP, graph convolutional neural networks, etc...)
- Secure enclaves
- ...
- Join the community!

2nd TVM conference on Dec 5, 2019. 200+ ppl last year!

Literature Deploy and Integration Contribute to TVM Frequently Asked Questions from tvm import rpc, autotvm
from tvm.contrib import graph_runtime, util
from tvm.contrib.download import download
import nnvm.compiler
import vta
import vta.testing

3rd TVM conference on Dec 3/4, 2020. https://tvmconf.org

- Video tutorials
- iPython notebooks tutorials

Drive TVM adoption Core infrastructure and improvements

Product: SaaS automation for ML ops

Optimizing, benchmarking, and packaging models for deployment

Support TVM end users and hardware vendors

Apache TVM ecosystem

https://octoml.ai

© 2020 OctoML and University of Washington

TVM is an emerging **open source** standard for ML compilation and optimization

TVM offers

- Improved time to market for ML
- Performance
- Unified support for CPU, GPU, Accelerators
- On the framework of your choice

OctoML is here to help you succeed in you ML deployment needs

