
© 2020 OctoML and University of Washington

Introduction to the TVM Open
Source Deep Learning Compiler
Stack

Luis Ceze
w/ Tianqi Chen, Thierry Moreau, Jared Roesch, Ziheng Jiang,
Lianmin Zheng, Eddie Yan, Meghan Cowan, Chien-Yu Lin,
Haichen Shen, Leyuan Wang, Yuwei Hu, Carlos Guestrin,
Arvind Krishnamurthy, Zach Tatlock, and many in the Apache
TVM community!

hand by Escher

© 2020 OctoML and University of Washington

A perfect storm

2

Growing set of requirements: Cost, latency, power, security & privacy

Cambrian explosion of models,
workloads, and use cases CNN GAN RNN MLP DQNN

Rapidly evolving ML software
ecosystem

Silicon scaling limitations
(Dennard and Moore)

Cambrian explosion of HW backends.
Heterogeneous HW

© 2020 OctoML and University of Washington

Current Dominant Deep Learning
Systems Landscape

3

Frameworks and
Inference engines

DL Compilers

Kernel
Libraries

Hardware

Orchestrators

Azure ML GCP Datalab

cuDNN NNPack MKL-DNN

Open source, automated
end-to-end optimization

framework for deep learning

Hand optimized

© 2020 OctoML and University of Washington

Stack

4

End-to-end,
framework to metal open

stack.
Research and deployment.

High-Level Differentiable IR

Tensor Expression IR

LLVM, CUDA, Metal VTA

Edge
FPGA

Cloud
FPGA

ASIC

Open source synthesizable deep
learning accelerator design

© 2020 OctoML and University of Washington

Automated by Machine Learning

5

High-Level Differentiable IR

Tensor Expression IR

LLVM, CUDA, Metal VTA

Edge
FPGA

Cloud
FPGA

ASIC

TVM: Automated End-to-end Optimizations for Deep Learning. Chen et al. OSDI 18

ML-based
Optimization

AutoTVM

AutoVTA

Hardware Fleet

© 2020 OctoML and University of Washington

End-user perspective:
Compile & deploy

6

import tvm
from tvm import relay

graph, params =
Frontend.from_keras
(keras_resnet50)

graph, lib, params =
Relay.build(graph, target)

Compile Deploy

© 2020 OctoML and University of Washington

Open Source Community
and Impact

7

Open source: ~420+ contributors from UW, Berkeley, Cornell, UCLA, Amazon, Huawei, NTT, Facebook, Microsoft,
Qualcomm, Alibaba, Intel, …

Incubated as Apache TVM. Independent governance, allowing competitors to
collaborate.

Used in production at leading companies

Deep Learning
Compiler Service

DSP/Tensor engine
for mobile

Mobile and Server
Optimizations

Cloud-side model
optimization

© 2020 OctoML and University of Washington 8

© 2020 OctoML and University of Washington

Existing Deep Learning Frameworks

9

Frameworks

Hardware

Primitive Tensor operators such as
Conv2D

High-level data flow graph

Offload to heavily optimized DNN operator
library

eg. cuDNN

© 2020 OctoML and University of Washington

Engineering costs limits progress

10

cuDNN Engineering intensive

New operator introduced by operator fusion optimization potential
benefit: 1.5x speedup

Frameworks

© 2020 OctoML and University of Washington

Our approach: Learning-based Learning System

11

Frameworks

Hardware

Directly generate optimized program
for new operator workloads and hardware

High-level data flow graph and optimizations

Machine Learning based Program Optimizer

© 2020 OctoML and University of Washington

Tensor Compilation/Optimization as a
search problem

12

Tensor Expression (Specification)

C = tvm.compute((m, n),

lambda y, x: tvm.sum(A[k, y] * B[k, x], axis=k))

Search Space of Possible Program Optimizations

Low-level Program Variants

© 2020 OctoML and University of Washington

Search Space Example (1/3)

13

Search Space of Possible Program Optimizations

Vanilla Code

Tensor Expression (Specification)

C = tvm.compute((m, n),

lambda y, x: tvm.sum(A[k, y] * B[k, x], axis=k))

© 2020 OctoML and University of Washington

Search Space Example (2/3)

14

Search Space of Possible Program Optimizations

Loop Tiling for Locality

Tensor Expression (Specification)

C = tvm.compute((m, n),

lambda y, x: tvm.sum(A[k, y] * B[k, x], axis=k))

© 2020 OctoML and University of Washington

Search Space Example (3/3)

15

Search Space of Possible Program Optimizations

Map to Accelerators

Tensor Expression (Specification)

C = tvm.compute((m, n),

lambda y, x: tvm.sum(A[k, y] * B[k, x], axis=k))

© 2020 OctoML and University of Washington

Optimization space is really large…

16

Loop Transformations
Thread

Bindings
Cache

Locality

Thread Cooperation Tensorization
Latency
Hiding

Typically explored via human intuition.
How can we automate this? Auto-tuning is too slow.

Billions of possible
optimization
choices

Tensor Expression (Specification)

C = tvm.compute((m, n),

lambda y, x: tvm.sum(A[k, y] * B[k, x], axis=k))

© 2020 OctoML and University of Washington

Problem Formalization

17

Search Space

Expression

Objective

Code Generator

Optimization
Configuration

Cost:
Execute Time

Program

AutoOpt

© 2020 OctoML and University of Washington

Black-box Optimization

18

Challenge: Lots of experimental trials, each trial costs ~1 second

Code Generator

Try each configuration until we find a good one

Search Space

Expression AutoTVM

© 2020 OctoML and University of Washington

Cost-model Driven Approach

19

Search Space

Expression AutoOpt

Challenge: Need reliable cost model per hardware

Use cost model to pick configuration

Code Generator

Cost Model

© 2020 OctoML and University of Washington

Statistical Cost Model

20

Search Space

Expression AutoOpt Code Generator

Our approach: Use machine learning to learn a statistical cost model

Statistical
Cost Model

Learning

Training data

Benefit: Automatically adapt to hardware type Important: How to design the cost model

© 2020 OctoML and University of Washington

Search
Space

Expression2

2 AutoTVM

Shared
Cost Model

Code
Generator

New Tasks

Historical data from related operators
(tasks)

Need task invariant

representation

Transfer learning

AutoTVM Overview

21

Conv2D

Matmul

O(microseconds) inference vs. O(seconds) execution

Search
Space

Expression AutoTVM
Code

Generator

Statistical
Cost Model

Learning

Training data

High-level
configurations

Low-level
Abstract Syntax Tree

(AST)

Benefit: Low-level AST is a common representation (General, task
invariant)

Your favourite model

Statistical features
of AST

+ +

Learning to Optimize Tensor Programs. Chen et al. NeurIPS 18

© 2020 OctoML and University of Washington

Does it work?

22

Better than hand-tuned code in a few minutes

1.50x faster than hand-tuned in steady state

AutoTVM + transferred model

3x to 10x faster tuning w/ transfer
learning

© 2020 OctoML and University of Washington

Device Fleet: Distributed Test Bed for AutoTVM

23

Resource
Allocation

Resource
Token

Resource Manager (Tracker)

Nvidia GPU Server

RPC RT CUDA

Android Phone

RPC RT OpenCL

Zynq FPGA Board

RPC RT Bitstream

AutoTVM
Experiment 1

AutoTVM
Experiment 2

Persistent Remote Session

Scale up optimization
Resource sharing

…

© 2020 OctoML and University of Washington

State-of-the-art performance

24

Nvidia Titan X ARM GPU (MALI)ARM CPU
(Cortex-A53)

Key point: TVM offers good performance with low manual effort

© 2020 OctoML and University of Washington 25

End-to-end,
framework to metal open

stack.
Research and deployment

High-Level Differentiable IR

Tensor Expression IR

LLVM, CUDA, Metal VTA

Edge
FPGA

Cloud
FPGA

ASIC

Open source synthesizable deep
learning accelerator design

Stack

© 2020 OctoML and University of Washington

DL Accelerator Design Challenges

26

CNN

GAN

RNN

MLP

DQNN

• Keeping up with algorithmic changes

• Finding the right generality/efficiency trade-off

• Enable a “day-0” software stack on top

• (VTA: two-level ISA, templatized design)

• (VTA: templatized design + HW parameter search)

• (VTA: tight coupling with TVM)

© 2020 OctoML and University of Washington

VTA:
Open & Flexible Deep Learning Accelerator

27

Current TVM Stack

VTA Runtime & JIT Compiler

VTA MicroArchitecture VTA Simulator

VTA Hardware/Software Interface (ISA)

• Move hardware complexity to
software via a two-level ISA

• Runtime JIT-compile
accelerator micro code

• Native support in TVM

• Support heterogenous devices
(split graph)

• Support for secure execution
(soon)

© 2020 OctoML and University of Washington

VTA Open Source Deep Learning accelerator

28

• Decoupled access-execute with explicit software control
• Two-level ISA: JIT breaks multi-cycle “CISC” instructions into micro-ops

• Enables model retargeting without HW changes
• Focused on FPGA deployments so far. Exploring custom silicon

possibilities

Note: HW-SW Blueprint for Flexible Deep Learning Acceleration. Moreau et al. IEEE Micro 2019.

Template

© 2020 OctoML and University of Washington

µTVM - Bare-metal model deployment for edge
devices

29

Optimize, compile and package model for standalone bare metal
deployment

See recent demo on TVM for Azure Sphere deployment.

µTVMML model

Optimized
model

Optimized
operators

Standalone
runtime

Edge device board
(ARM, MIPS, RISC-
V,...)

Flash code

© 2020 OctoML and University of Washington

Coming Soon - Ultra low bit-width quantization

Automatic quantization: 5-20x

performance gains with reasonable

accuracy loss.

TVM supports flexible code

generation for a variety of data

types

Squeezenet on RaspberryPi 3

© 2020 OctoML and University of Washington

What about training?

31

• Direct support for training in Apache TVM
coming soon!

• Automatic generation of gradient programs

• Support for customized data types and training
on FPGAs

High-Level Differentiable IR

Tensor Expression IR

LLVM, CUDA, Metal VTA

Edge
FPGA

Cloud
FPGA

ASIC

Standalone training deployment

Standalone inference deployment

Gradient Program for Training

Automatic Differentiation

© 2020 OctoML and University of Washington

Other Ongoing TVM efforts

32

• Autoscheduling (Zheng et al. OSDI’20 @ UCBerkeley)

• Automatic synthesis of operator implementations (Cowan et al. CGO’20 @ UWash)

• Sparse support (NLP, graph convolutional neural networks, etc…)

• Secure enclaves

• …

• Join the community!

© 2020 OctoML and University of Washington

https://tvm.ai

33

2nd TVM conference on Dec 5, 2019. 200+ ppl last year!

• Video tutorials
• iPython notebooks tutorials

3rd TVM conference on Dec 3/4, 2020. https://tvmconf.org

https://tvm.ai/

© 2020 OctoML and University of Washington 34

https://octoml.ai

© 2020 OctoML and University of Washington

What I would like you to remember…

35

TVM is an emerging open source standard for ML compilation and optimization

TVM offers

• Improved time to market for ML

• Performance

• Unified support for CPU, GPU, Accelerators

• On the framework of your choice

OctoML is here to help you succeed in you ML deployment needs

End-to-end,
framework to

metal open stack.
Research and
deployment

High-Level Differentiable IR

Tensor Expression IR

LLVM, CUDA, Metal VTA

Edge
FPGA

Cloud
FPGA

ASIC

