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Motivation(1)

• Number of edge devices is growing 

rapidly, lots of these devices are 

resource constrained.

• Gartner predicts that 80% of mobile 

devices shipped in 2022 will have 

on device AI.

Source: https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/



Motivation(2)

• While models are becoming 
more efficient, high accuracy 
still implies high complexity

From: Benchmark Analysis of Representative 

Deep Neural Network Architectures, Simone 

Bianco et al,

https://arxiv.org/abs/1810.00736


Motivation(3)

• Energy consumption is 

dominated by memory 

accesses

• Reduced precision is 
critical to save power 



Quantization

• Many approaches to solve the problems outlined here:

➢Better hardware accelerators:  DSPs, NPUs

➢Requires new custom hardware

➢Efficient deep network architectures:  Mnasnet, Mobilenet, FBNet

➢ Requires new model architectures

• A simpler approach that does not require re-design of models/new hardware is quantization.

• Quantization refers to techniques to perform computation and storage at reduced precision

• Works in combination with above approaches

• Table stakes for low power custom hardware



Quantization: Benefits

Benefits Quantization

Applicability Broad applicability across models and use cases

Support Supported by x86, Nvidia Volta, ARM, Mali, Hexagon

Software Support Kernel libraries widely available

Memory Size 4x reduction

Memory Bandwidth/Cache 4x reduction

Compute 2x to 4x speedup, depending on ISA

Power ~4x*

Note: Comparing float32 implementations with 8 bit inference on CPU

* Higher power savings are possible due to cache effects



Background: Quantization(1)

• Quantization refers to mapping values from fp32 to a lower precision format. 

• Specified by 

• Format

• Mapping type

• Granularity

fp32

fp16

bfloat16

int8

int4

binary



Background: Quantization(2)

• We also consider different granularities of quantization:

• Per tensor quantization

• Same mapping for all elements in a tensor.

• Per-axis/per-channel quantization:

• Choose quantizer parameters independently for each row (fc layers) or for each conv kernel (conv 

layers) for weights



Quantizing Deep Neural Networks



Model Quantization: Overview
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Post Training Quantization: Weight Compression

• Simplest quantization scheme is to compress the weights to lower 

precision

• Requires no input data and can be done statically as part of preparing 
a model for inference

• Hardware accelerators can benefit if de-compression is done after 
memory access

• Trivial for case of fp16/int8 quantization of weights.

• K-means compression is also supported in select platforms and is 
amenable to simple de-compression

• Scatter-Gather operation in select processors

• Supported in CoreML



Dynamic Quantization

• Dynamic quantization refers to schemes where the activations are read/written in fp32 and are dynamically 

quantized to lower precisions for compute.

• Requires no calibration data

• Data exchanged between operations is in floating point, so no need to worry about format conversion.

• Provides performance improvements close to static quantization as long as the latency is compute bound.

• Suitable for inference for transformer/LSTM models

• Supported by:

• Pytorch

• Tensorflow Lite 



Quantizing Weights and Activations

• Post training quantization refers to quantizing both weights and activations to reduced 

precision, typically int8. 

• Requires estimation of statistics of activations for determining quantizer parameters.

• Quantizer parameters are determined by minimizing an error metric:

• KL Divergence: TensorRT

• Saturation error: Tensorflow Lite

• Expected quantization error: Pytorch



Modeling Quantization During Training

• Emulate quantization by quantizing and de-quantizing 

in succession

• Values are still in floating point, but with reduced 
precision

• 𝑥𝑜𝑢𝑡 = 𝐹𝑎𝑘𝑒𝑄𝑢𝑎𝑛𝑡 𝑥

= 𝑠. 𝐶𝑙𝑎𝑚𝑝 𝑟𝑜𝑢𝑛𝑑
𝑥

𝑠
− 𝑧 + 𝑧

= 𝐷𝑒𝑄𝑢𝑎𝑛𝑡(𝑄𝑢𝑎𝑛𝑡 𝑥 )

• Can also model quantization as a stochastic rounding 

operation
Fake Quantizer (top), showing the 

quantization of output values. 

Approximation for purposes of derivative 

calculation (bottom).



Comparison of Quantization Techniques

Multiple ways to quantize a network with different impact:

Quantization 

scheme

Memory bandwidth 

reduction (Weights)

Memory bandwidth 

reduction (Activations)

Compute 

Speedup

Notes

Weight only 

quantization to int8

4x 1x 1x Suitable for 

embedding lookups

Dynamic 

quantization

4x 1x 2x Suitable for compute 

bound layers

Static quantization 

(int32 accumulators)

4x 4x 2x Suited for all layers, 

important for 

convolutions

Static quantization 

(int16 accumulators)

4x 4x 4x Requires lower 

precision 

weights/activations



Results



Post Training Quantization Results

fp32 accuracy int8 accuracy change Technique
CPU inference speed 

up

ResNet50 76.1
Imagenet

-0.2
75.9

Post Training
2x

214ms ➙102ms,

Intel Skylake-DE

BERT 90.2
F1 (GLUE MRPC)

0.0
90.2

Dynamic Quantization 

with per-channel 

quantization

1.6x
581ms ➙313ms,

Intel Skylake-DE, Batch size=1



Quantization Aware Training

• Quantization aware training provides the best accuracy and allows for simpler 
quantization schemes.

fp32 accuracy
int8 accuracy 

change
Technique

CPU Inference 

speedup

MobileNetV2 71.9
Imagenet

-6.3
65.6

Post Training: Per 

Tensor 

quantization 4x
75ms ➙18ms

OnePlus 5, 

Snapdragon 835

MobileNetV2 71.9
Imagenet

-4.8
67.1

Post-Training: Per-

channel 

quantization

MobileNetV2 71.9
Imagenet

-0.4
71.5

Quantization-

Aware Training: 

Per Tensor 

Quantization



Recipe for Quantizing a Model



Recipe(1)

• Profile your model first:

• Latency:  Dynamic quantization (CPU)

• Model size: Dynamic/Static quantization

• Code size: Choose appropriate framework

• Power:  Static quantization, custom hardware (NPU)

• Accuracy: Quantization aware training (if needed)

• Iterate on architecture: Exponential tradeoff between complexity and accuracy



Recipe(2)

• Fuse: Optimize your model and kernels

• Fuse operations as much as possible:

• Conv-Relu, Conv-Batch norm and more

• Quantize and check the accuracy

• If accuracy is not sufficient

• Try Quantization aware training

• Selectively quantize parts of model
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Learn More

Resources

https://pytorch.org/docs/stable/quantization.html

https://www.tensorflow.org/model_optimization

Tutorials

https://pytorch.org/tutorials/advanced/static_quan

tization_tutorial.html

Quantized models for download

https://github.com/pytorch/vision/tree/master/tor

chvision/models/quantization

2020 Embedded Vision Summit

“Practical DNN Quantization Techniques 

and Tools”

9/15/2020
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