
Practical DNN Quantization
Techniques and Tools

Raghuraman Krishnamoorthi
Software Engineer, Facebook
Sept 2020

Outline

• Motivation

• Quantization: Overview

• Quantizing deep networks

• Post Training quantization

• Quantization aware training

• Best Practices

• Conclusions

Motivation(1)

• Number of edge devices is growing

rapidly, lots of these devices are

resource constrained.

• Gartner predicts that 80% of mobile

devices shipped in 2022 will have

on device AI.

Source: https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

Motivation(2)

• While models are becoming
more efficient, high accuracy
still implies high complexity

From: Benchmark Analysis of Representative

Deep Neural Network Architectures, Simone

Bianco et al,

https://arxiv.org/abs/1810.00736

Motivation(3)

• Energy consumption is

dominated by memory

accesses

• Reduced precision is
critical to save power

Quantization

• Many approaches to solve the problems outlined here:

➢Better hardware accelerators: DSPs, NPUs

➢Requires new custom hardware

➢Efficient deep network architectures: Mnasnet, Mobilenet, FBNet

➢ Requires new model architectures

• A simpler approach that does not require re-design of models/new hardware is quantization.

• Quantization refers to techniques to perform computation and storage at reduced precision

• Works in combination with above approaches

• Table stakes for low power custom hardware

Quantization: Benefits

Benefits Quantization

Applicability Broad applicability across models and use cases

Support Supported by x86, Nvidia Volta, ARM, Mali, Hexagon

Software Support Kernel libraries widely available

Memory Size 4x reduction

Memory Bandwidth/Cache 4x reduction

Compute 2x to 4x speedup, depending on ISA

Power ~4x*

Note: Comparing float32 implementations with 8 bit inference on CPU

* Higher power savings are possible due to cache effects

Background: Quantization(1)

• Quantization refers to mapping values from fp32 to a lower precision format.

• Specified by

• Format

• Mapping type

• Granularity

fp32

fp16

bfloat16

int8

int4

binary

Background: Quantization(2)

• We also consider different granularities of quantization:

• Per tensor quantization

• Same mapping for all elements in a tensor.

• Per-axis/per-channel quantization:

• Choose quantizer parameters independently for each row (fc layers) or for each conv kernel (conv

layers) for weights

Quantizing Deep Neural Networks

Model Quantization: Overview

Train

Convert for

inference

Graph

Optimization

Kernels

Train

Convert for

inference

Graph

Optimization

Kernel

Implementation

Quantization

Train

Convert for

inference

Graph

Optimization

Kernel

Implementation

Quantization

Prepare for

Quantization

Quantization

Model Model Model

Compile Compile Compile

Post Training Quantization: Weight Compression

• Simplest quantization scheme is to compress the weights to lower

precision

• Requires no input data and can be done statically as part of preparing
a model for inference

• Hardware accelerators can benefit if de-compression is done after
memory access

• Trivial for case of fp16/int8 quantization of weights.

• K-means compression is also supported in select platforms and is
amenable to simple de-compression

• Scatter-Gather operation in select processors

• Supported in CoreML

Dynamic Quantization

• Dynamic quantization refers to schemes where the activations are read/written in fp32 and are dynamically

quantized to lower precisions for compute.

• Requires no calibration data

• Data exchanged between operations is in floating point, so no need to worry about format conversion.

• Provides performance improvements close to static quantization as long as the latency is compute bound.

• Suitable for inference for transformer/LSTM models

• Supported by:

• Pytorch

• Tensorflow Lite

Quantizing Weights and Activations

• Post training quantization refers to quantizing both weights and activations to reduced

precision, typically int8.

• Requires estimation of statistics of activations for determining quantizer parameters.

• Quantizer parameters are determined by minimizing an error metric:

• KL Divergence: TensorRT

• Saturation error: Tensorflow Lite

• Expected quantization error: Pytorch

Modeling Quantization During Training

• Emulate quantization by quantizing and de-quantizing

in succession

• Values are still in floating point, but with reduced
precision

• 𝑥𝑜𝑢𝑡 = 𝐹𝑎𝑘𝑒𝑄𝑢𝑎𝑛𝑡 𝑥

= 𝑠. 𝐶𝑙𝑎𝑚𝑝 𝑟𝑜𝑢𝑛𝑑
𝑥

𝑠
− 𝑧 + 𝑧

= 𝐷𝑒𝑄𝑢𝑎𝑛𝑡(𝑄𝑢𝑎𝑛𝑡 𝑥)

• Can also model quantization as a stochastic rounding

operation
Fake Quantizer (top), showing the

quantization of output values.

Approximation for purposes of derivative

calculation (bottom).

Comparison of Quantization Techniques

Multiple ways to quantize a network with different impact:

Quantization

scheme

Memory bandwidth

reduction (Weights)

Memory bandwidth

reduction (Activations)

Compute

Speedup

Notes

Weight only

quantization to int8

4x 1x 1x Suitable for

embedding lookups

Dynamic

quantization

4x 1x 2x Suitable for compute

bound layers

Static quantization

(int32 accumulators)

4x 4x 2x Suited for all layers,

important for

convolutions

Static quantization

(int16 accumulators)

4x 4x 4x Requires lower

precision

weights/activations

Results

Post Training Quantization Results

fp32 accuracy int8 accuracy change Technique
CPU inference speed

up

ResNet50 76.1
Imagenet

-0.2
75.9

Post Training
2x

214ms ➙102ms,

Intel Skylake-DE

BERT 90.2
F1 (GLUE MRPC)

0.0
90.2

Dynamic Quantization

with per-channel

quantization

1.6x
581ms ➙313ms,

Intel Skylake-DE, Batch size=1

Quantization Aware Training

• Quantization aware training provides the best accuracy and allows for simpler
quantization schemes.

fp32 accuracy
int8 accuracy

change
Technique

CPU Inference

speedup

MobileNetV2 71.9
Imagenet

-6.3
65.6

Post Training: Per

Tensor

quantization 4x
75ms ➙18ms

OnePlus 5,

Snapdragon 835

MobileNetV2 71.9
Imagenet

-4.8
67.1

Post-Training: Per-

channel

quantization

MobileNetV2 71.9
Imagenet

-0.4
71.5

Quantization-

Aware Training:

Per Tensor

Quantization

Recipe for Quantizing a Model

Recipe(1)

• Profile your model first:

• Latency: Dynamic quantization (CPU)

• Model size: Dynamic/Static quantization

• Code size: Choose appropriate framework

• Power: Static quantization, custom hardware (NPU)

• Accuracy: Quantization aware training (if needed)

• Iterate on architecture: Exponential tradeoff between complexity and accuracy

Recipe(2)

• Fuse: Optimize your model and kernels

• Fuse operations as much as possible:

• Conv-Relu, Conv-Batch norm and more

• Quantize and check the accuracy

• If accuracy is not sufficient

• Try Quantization aware training

• Selectively quantize parts of model

22

Learn More

Resources

https://pytorch.org/docs/stable/quantization.html

https://www.tensorflow.org/model_optimization

Tutorials

https://pytorch.org/tutorials/advanced/static_quan

tization_tutorial.html

Quantized models for download

https://github.com/pytorch/vision/tree/master/tor

chvision/models/quantization

2020 Embedded Vision Summit

“Practical DNN Quantization Techniques

and Tools”

9/15/2020

23

https://pytorch.org/docs/stable/quantization.html
https://www.tensorflow.org/model_optimization
https://pytorch.org/tutorials/advanced/static_quantization_tutorial.html
https://github.com/pytorch/vision/tree/master/torchvision/models/quantization

