

Image Based Deep Learning for Manufacturing Fault Condition Detection

Janghwan Lee, Wei Xiong, Wonhyouk Jang Samsung Display America Lab and Display Research Center September 2020

SAMSUNG

Agenda

- Introduction
- Challenges for the dataset
- Data processing & baseline solution
- Issue Analysis and Solutions
- Experiments and Result
- Conclusion

Introduction

Trace Data Analytics:

- To understand the nature of fault conditions in display panel manufacturing process using multivariate time series sensor signals
- Digital trace data is defined as records of activity undertaken through an information system. A trace is
 a mark left as a sign of passage; it is recorded evidence that something has occurred in the past. For
 trace data, the system acts as a data collection tool*

Challenges for the Dataset

- Trace data from multivariate numerical data
 - multiple time series input from sensors
- **Generalized ML model generation**
 - **Dataset insufficiency:** too sparse to train deep neural network 0
 - Class imbalance: lack of fault data samples 0

NG: 22

Data Processing, Baseline Model, and Issue Analysis and Solutions

Trace Data Processing

2D trace data generation from multiple time series input signals from sensors:

⇒empirical approach

Sample size alignment for unit task

Merge parameters

Trace Data Processing

Parameters order rearrangement

Data conversion for CNN model

224x224 image to use transfer learning with SqueezeNet*

*: SqeezeNet

https://arxiv.org/abs/1602.07360

Baseline Model

- Evaluate that if 2D trace data has enough information to identify fault conditions
- Input data processing
 - To overcome the class imbalance in input dataset: oversampling minority class (SMOTE and ADASYN)
- Dataset construction

Туре	Train set	Test set
Pass	3149	787
Fault	500 (OVS)	22

Intermediate Results

Results (with SqueezeNet)

Туре	Train set	Test set	Train Acc.	Test Acc.
Pass	3149	787	0.9546	0.9111
Fault	500 (OVS)	22	1.0000	0.8182

- Verified that it is possible to generate fault condition classifier using 2D trace data
- Remaining Issues for model generalization
 - Insufficient data and class imbalance
 - Solve with Model Instance Distillation

Comparison with other works				
ImageNet	Our Research			
14,197,122 images	3,958 samples			
1000 classes	Binary classes			
14K images/class	2K images/class			
Class balanced	Class imbalance (3936 : 22 (+500))			
Fully trained	Transfer learning			
97% / 86.4%	91% / 82%			

Solution for Class Imbalance

Minority Class Data Oversampling

- Original data space
- Latent space

Synthetic Data Generation

 Random data generation using deep generative model

Data Construction

SMOTE (https://arxiv.org/pdf/1106.1813.pdf),
ADASYN (https://ieeexplore.ieee.org/document/4633969)
VAE (Variational Autoencoders: reference 2 in the resource slide

Issue for Data Insufficiency: Generalization

11

Lack of generality

Small dataset to train a deep Learning model

With a given dataset, all ML/AI models make same classification

Multiple decision boundary from multiple instantiation of ML models

These ML/AI models will make different decisions for future data

© 2020 Samsung

Issue for Data Insufficiency: Explanation

- To train complex DNN model with limited amount of data samples is a challenging task.
- The curse of dimensionality:

Hypothesis

The major issue for generating a generalized model with limited dataset is the **sparsity** of input dataset and this issue could be improved by **augmenting dataset with enough variance**

Knowledge Distillation: Model Instance Distillation

Existing models

Model Instance Distillation (MID)

Data Augmentation

- Searching for a method to augment variability in input data
 - (a) Spatial transform (b) Obtain unlabeled dataset (c) **Generative model**

Could we generate data points to clarify the decision boundary?

⇒ Deep Generative Models (VAE)

Knowledge distillation from multiple instances of Al/ML models into a dataset

⇒ Generate a new dataset annotated with a new decision boundary

Deep Generative Models

Experiments and Results

Dataset: Data Augmentation for MID

VAE Latent Space Oversampling

- Generate samples with label in latent space
- Cluster analysis and classification in latent space

VAE latent space oversampling

Bad case of oversampling

Model Instance Distillation (MID)

Results

19

- Fault condition classification results
- Comparison with other approaches
- High Accuracy
- Model Consistency
- Light weight comparing to ensemble models

Classification Results			
Туре	Training Accuracy	Test Accuracy	
Pass	1.000	0.9975	
Fault	0.9997	0.9545	

Classification Results w/o VAE OVS			
Туре	Training Accuracy	Test Accuracy	
Pass	1.000	0.9988	
Fault	0.9997	0.9091	

Comparison with other methods

© 2020 Samsung

Conclusion

- High accuracy fault condition classification using supervised trace data together with large amount of synthetically generated data in VAE latent space.
- Knowledge distillation from model instances over augmented dataset to overcome class imbalance and data insufficiency.
- Proposed a method to generate 2D trace data from multivariate manufacturing sensor signals.

Future works

- Deploy to monitor manufacturing processes
- Extend to other display manufacturing datasets
- Cluster analysis in latent space

© 2020 Samsung 20

Resource

References

- 1. Trace Data Analytics with Knowledge Distillation
 - J. Lee, W. Xiong, and W. Jang, ASMC (2020)
- 2. Auto-Encoding Variational Bayes
 - D. Kingma and W. Welling, Proc. ICLR (2015)
- 3. Data Distillation: Toward Omni-Supervised Learning
 - I. Radosavovic, P. Dollar, R. Girshick, G. Gkioxari, K. He, CVPR (2018)
- 4. SqueezeNet: Alexnet-level accuracy with 50x fewer parameters and <0.5MB model size
 - F.N. landola, S. Han, M.W. Moskewicz, K. Ashraf, W. J. Dally, K. Keutzer, arXiv (2017)

