
© 2020 Samsung

Improving Power Efficiency for
Edge Inferencing Through
Memory Management
Optimizations

Nathan Levy
Samsung
September 2020

© 2020 Samsung

Outline

• Introduction

• Tiling and forwarding

• Filters management

• Case study of different modern convolutional neural networks

• Conclusion

2

© 2020 Samsung

Counting the I/O in the TOps per Watt KPI

• Power consumption is composed of:

• Compute power: perform the arithmetic computations

• I/O power: bring the data to the compute engine and back

• For convolutional neural networks, I/O power can be higher than compute

• The compiler must optimize the memory management

• Scope: convolutional neural network (CNN) acceleration

• Focus on convolutions

• Assume the network is fixed (and quantized, pruned…)

• Inference only

3

© 2020 Samsung

Description of the working model

What is a convolution?

• Input: feature map and filters

• Apply: multiply and accumulate

• Output: feature map

CNN can be processed by CPU, DSP, GPU, NPU/TPU

• These often have multiple cores

• These have multiple levels of memories (cache and
scratch-pad)

4

Input feature map

Filter
zb

Output feature map

Output activation

Filter
za

Output activationX
i

Yi

X
o

Yo

© 2020 Samsung

Description of the working model

Simplified toy example:

• Single processing core

• Small local memory with “free”
access and big remote memory
with expensive access

Remote memory contains:

• Input and output feature maps

• Convolution filters

• Intermediate feature maps (if
needed)

5

Remote memory Conv 1

Local memory

Processing
unit

Feature Map 1 Feature Map N

Conv M

Filters

© 2020 Samsung

Typical orders of magnitude for NPU

• The memory management problem
depends on the relative size of:

• The local memory of the processor

• The typical feature map of the
network

• Our working point:

Feature map size ~

10 * Local memory size

6

Local memory size [B]

Feature map size [B]

10k 100k 1M 10M

10k

100k

1M

10M

100M

IoT

Mobile

Automotive

© 2020 Samsung

Tiling and forwarding

© 2020 Samsung

Tiling and Forwarding

How to overcome the small memory size:

• Split the input feature map into smaller
parts → tiles

• Apply the convolution on the input feature
map tile

→ Creates an output feature map tile

The output feature tile can be either:

• Written in remote memory

• Used for the next convolution

→ This is called forwarding

8

Remote memory Conv 1

Local memory

Processing
unit

IFM (not in mem) OFM (not in
mem)

Feature Map 1 Feature Map N

Conv M

Conv i

Input feature
map tile

Output feature
map tile

Filters

© 2020 Samsung

How to tile and forward

How does the compiler tile and forward to minimize power
consumption?

Key optimization parameters:

• Power consumption: bandwidth (I/O) + compute

→ Focus of this talk

• Processing throughput (operations/second)

• Chip area → cost

• System complexity, flexibility and maintenance

9

© 2020 Samsung

3x3

conv

3x3

conv

From
remote
memory

To
remote
memory

Tiling and increasing receptive fields

2 convolutions with 3x4 tiling. Without access to remote memory in the middle (forwarding)

For i in [1-12]:

• Load tile i of blue feature map from remote memory

• Run 1st convolution → tile i of green feature map

• Run 2nd convolution → tile i of yellow feature map

• Store tile i of yellow feature map to remote memory

© 2020 Samsung

Tiling and increasing receptive fields

2 convolutions with 3x4 tiling. Without access to remote memory in the middle (forwarding)

For i in [1-12]:

• Load tile i of blue feature map from remote memory

• Run 1st convolution → tile i of green feature map

• Run 2nd convolution → tile i of yellow feature map

• Store tile i of yellow feature map to remote memory

3x3

conv

3x3

conv

From
remote
memory

To
remote
memory

© 2020 Samsung

Tiling and increasing receptive fields

3x3

conv

3x3

conv

From
remote
memory

To
remote
memory

2 convolutions with 3x4 tiling. Without access to remote memory in the middle (forwarding)

For i in [1-12]:

• Load tile i of blue feature map from remote memory

• Run 1st convolution → tile i of green feature map

• Run 2nd convolution → tile i of yellow feature map

• Store tile i of yellow feature map to remote memory

© 2020 Samsung

3x3

conv

3x3

conv

From
remote
memory

To
remote
memory

Tiling and increasing receptive fields

2 convolutions with 3x4 tiling. Without access to remote memory in the middle (forwarding)

For i in [1-12]:

• Load tile i of blue feature map from remote memory

• Run 1st convolution → tile i of green feature map

• Run 2nd convolution → tile i of yellow feature map

• Store tile i of yellow feature map to remote memory

© 2020 Samsung

3x3

conv

3x3

conv

From
remote
memory

To
remote
memory

Tiling and increasing receptive fields

2 convolutions with 3x4 tiling. Without access to remote memory in the middle (forwarding)

For i in [1-12]:

• Load tile i of blue feature map from remote memory

• Run 1st convolution → tile i of green feature map

• Run 2nd convolution → tile i of yellow feature map

• Store tile i of yellow feature map to remote memory

© 2020 Samsung

3x3

conv

3x3

conv

From
remote
memory

To
remote
memory

Tiling and increasing receptive fields

2 convolutions with 3x4 tiling. Without access to remote memory in the middle (forwarding)

For i in [1-12]:

• Load tile i of blue feature map from remote memory

• Run 1st convolution → tile i of green feature map

• Run 2nd convolution → tile i of yellow feature map

• Store tile i of yellow feature map to remote memory

© 2020 Samsung

3x3

conv

3x3

conv

From
remote
memory

To
remote
memory

Tiling and increasing receptive fields

2 convolutions with 3x4 tiling. Without access to remote memory in the middle (forwarding)

Problem: 3x3 convolution requires margins

© 2020 Samsung

3x3

conv

3x3

conv

From
remote
memory

To
remote
memory

Tiling and increasing receptive fields

2 convolutions with 3x4 tiling. Without access to remote memory in the middle (forwarding)

Solution: Bigger blue and green tiles

Problems:

• Load more data for the first (blue) layer

• Compute more data for the intermediate (green) layer

2 pixels margin 1 pixel margin

© 2020 Samsung

Tiling and increasing receptive fields

Consider a long chain of convolutions. How many stages of forwarding do you want?

• Forwarding tiles through as many layers as possible avoids dumping to remote
memory

• This causes the overlaps to grow

• More data to load for the first layer

• Redundant processing

18

conv conv conv conv

© 2020 Samsung

2 convolutions

of Convolutions Feature Map

Tiling

Bandwidth Bandwidth per

convolution

Operations per

convolution

Energy per

convolution

2 3x4 +6% -47% +5% -30%

3 3x4 +12% -63% +10% -39%

4 3x4 +17% -71% +16% -43%

5 4x4 +29% -74% +26% -42%

19

All numbers are compared to “no forwarding”

conv conv
To remote
memory

From remote
memory

Load the

overlaps

Compute the

overlaps

Less I/O

More compute

Break the feature map

into 12 to fit in memory

© 2020 Samsung

3 convolutions

of Convolutions Feature Map

Tiling

Bandwidth Bandwidth per

convolution

Operations per

convolution

Energy per

convolution

2 3x4 +6% -47% +5% -30%

3 3x4 +12% -63% +10% -39%

4 3x4 +17% -71% +16% -43%

5 4x4 +29% -74% +26% -42%

20

All numbers are compared to “no forwarding”

conv conv conv
To remote
memory

From remote
memory

© 2020 Samsung

4 convolutions

of Convolutions Feature Map

Tiling

Bandwidth Bandwidth per

convolution

Operations per

convolution

Energy per

convolution

2 3x4 +6% -47% +5% -30%

3 3x4 +12% -63% +10% -39%

4 3x4 +17% -71% +16% -43%

5 4x4 +29% -74% +26% -42%

21

All numbers are compared to “no forwarding”

conv conv conv conv
To remote
memory

From remote
memory

© 2020 Samsung

5 convolutions

of Convolutions Feature Map

Tiling

Bandwidth Bandwidth per

convolution

Operations per

convolution

Energy per

convolution

2 3x4 +6% -47% +5% -30%

3 3x4 +12% -63% +10% -39%

4 3x4 +17% -71% +16% -43%

5 4x4 +29% -74% +26% -42%

22

All numbers are compared to “no forwarding”

conv conv conv conv conv
From remote

memory

To remote
memory

Overlaps are so big we

need smaller tiles to fit

in local memory

© 2020 Samsung

Tiling and increasing receptive fields

23

Minimal energy

E
n

e
rg

y
[J

]

• The trade-off between I/O and compute
power leads to a U-shaped behavior

• The trade-off requires an optimization
mechanism in the compiler

• In our toy example, all the convolutions
are identical

• In a real CNN, the convolutions are
different, so the optimization problem is
not one-dimensional

Number of convolutions

© 2020 Samsung

Tiling and increasing receptive fields

More constraints to take into account:

• Some hardware will prefer vertical tiling for memory access

• Increases overlap sizes

• Some hardware will impose constraints on tile size (multiple of a given number)

Out-of-scope ways to deal with overlaps:

• Multi-core processing → hardware considerations and system complexity

• Keep overlap data instead of loading/computing again: takes up memory and requires memory
fragmentation management → system complexity

24

Tile 4

Tile 3

Tile 2

Tile 1

Tile 3 Tile 4

Tile 1 Tile 2

© 2020 Samsung

Filters management

© 2020 Samsung

Filters management

Option 1: reload the filters from remote to
local memory for each tile

→ wasted bandwidth

26

Option 2: keep the filters of all convolutions
in local memory while processing all the tiles

→wasted space in the local memory

→may increase the tiles number

Local memory

Filters for 1
convolution

Reload #tiles
times

Local memory

Filters for
convolution 1

Load once

Filters for
convolution n

© 2020 Samsung

Filters management

• No single strategy is the best all the time

• Choosing the right strategy can save up to
20% energy

• In practice, the problem is even more
complicated due to different convolutions
through the network

• The compiler should take the decision to
keep/reload the filters for each
convolution independently

27

0 100 200 300 400 500

Memory size [kB]

E
n

e
rg

y
[J

]
Local Memory Size [kB]

© 2020 Samsung

Case study of different modern
convolutional neural networks

28

© 2020 Samsung Huang 2017

Skip connections – residual block

Skip connections were introduced in the ResNet paper as
a way to facilitate back propagation

• Forwarding becomes more challenging: one strives
to keep both main path and skip connection in local
memory

Intensive usage in DenseNet

• Up to 6 skip connections alive simultaneously

29

He 2016

© 2020 Samsung

Skip connections – segmentation networks

U-net adds skip connections to encoder-decoder structure to
improve quality of segmentation

30

Ronneberger 2015.

© 2020 Samsung

Skip connections – segmentation networks

It can be mixed with residual blocks

31

Singla 2019

© 2020 Samsung

Inverted bottleneck

• Inverted bottleneck introduced in MobileNet
family

• Splitting the 3x3 convolution into 3x3 depthwise
convolution + 1x1 convolution reduces the
amount of parameters

• Can more easily be kept in memory and/or
reloaded

• 1x1 convolutions don’t create overlaps

• Skip connection on thinner feature map to
minimize memory impact

32

Sandler 2018

© 2020 Samsung

Conclusion

• Memory management is a complicated optimization problem

• The compiler affects many performance indices, in particular power and runtime

• The tradeoff is not intuitive and requires some evaluation mechanism

How do we do it?

• Map all the performance indices (power, runtime…) to a single cost

• The mapping may depend on the use case

• The compiler is able to analyze its decisions and evaluate the cost

• The compiler optimizes memory management to minimize the cost

33

© 2020 Samsung

Conclusion

What we didn’t cover:

• Pre-fetching for runtime reduction

• Multicore edge devices

• We described fixed hardware and fixed network. We actually co-design:

• Memory size, processing throughput, hardware limitations

• Network design to avoid access to remote memory

• Use of network architecture search

• Quantization and pruning to avoid access to remote memory

• Choice of bit-width and pruning rate per layer

34

© 2020 Samsung

Resources

He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE
conference on computer vision and pattern recognition. 2016.

Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the IEEE
conference on computer vision and pattern recognition. 2017.

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for
biomedical image segmentation." International Conference on Medical image computing and
computer-assisted intervention. Springer, Cham, 2015.

https://github.com/Nishanksingla/UNet-with-ResBlock

Sandler, Mark, et al. "Mobilenetv2: Inverted residuals and linear bottlenecks." Proceedings of the
IEEE conference on computer vision and pattern recognition. 2018.

35

https://github.com/Nishanksingla/UNet-with-ResBlock

