embedded VISIMN Summit

Improving Power Efficiency for Edge Inferencing Through Memory Management Optimizations

Nathan Levy Samsung September 2020

SAMSUNG

Outline

- Introduction
- Tiling and forwarding
- Filters management
- Case study of different modern convolutional neural networks
- Conclusion

Counting the I/O in the TOps per Watt KPI

embedded VISICN SUMMIT

- Power consumption is composed of:
 - Compute power: perform the arithmetic computations
 - I/O power: bring the data to the compute engine and back
- For convolutional neural networks, I/O power can be higher than compute
- The compiler must optimize the memory management
- Scope: convolutional neural network (CNN) acceleration
 - Focus on convolutions
 - Assume the network is fixed (and quantized, pruned...)
 - Inference only

Description of the working model

embedded VISION SUMMIT

What is a convolution?

- Input: feature map and filters
- Apply: multiply and accumulate
- Output: feature map

CNN can be processed by CPU, DSP, GPU, NPU/TPU

- These often have multiple cores
- These have multiple levels of memories (cache and scratch-pad)

Description of the working model

Simplified toy example:

- Single processing core
- Small local memory with "free" access and big remote memory with expensive access

Remote memory contains:

- Input and output feature maps
- Convolution filters
- Intermediate feature maps (if needed)

2020 embec

Typical orders of magnitude for NPU

 The memory management problem depends on the relative size of:

- The local memory of the processor
- The typical feature map of the network
- Our working point:

Feature map size ~ 10 * Local memory size

Feature map size [B] olem 100M processor 10M f the

SAMSUNG

Tiling and Forwarding

embedded VISICN Summit

How to overcome the small memory size:

- Split the input feature map into smaller parts → tiles
- Apply the convolution on the input feature map tile
 - \rightarrow Creates an output feature map tile

The output feature tile can be either:

- Written in remote memory
- Used for the next convolution
- \rightarrow This is called **forwarding**

How does the compiler tile and forward to minimize power consumption?

Key optimization parameters:

• Power consumption: bandwidth (I/O) + compute

\rightarrow Focus of this talk

- Processing throughput (operations/second)
- Chip area \rightarrow cost
- System complexity, flexibility and maintenance

- Load tile i of blue feature map from remote memory
- Run 1st convolution \rightarrow tile i of green feature map
- Run 2^{nd} convolution \rightarrow tile i of yellow feature map
- Store tile i of yellow feature map to remote memory

- Load tile i of blue feature map from remote memory
- Run 1st convolution \rightarrow tile i of green feature map
- Run 2^{nd} convolution \rightarrow tile i of yellow feature map
- Store tile i of yellow feature map to remote memory

- Load tile i of blue feature map from remote memory
- Run 1st convolution \rightarrow tile i of green feature map
- Run 2^{nd} convolution \rightarrow tile i of yellow feature map
- Store tile i of yellow feature map to remote memory

- Load tile i of blue feature map from remote memory
- Run 1st convolution \rightarrow tile i of green feature map
- Run 2^{nd} convolution \rightarrow tile i of yellow feature map
- Store tile i of yellow feature map to remote memory

- Load tile i of blue feature map from remote memory
- Run 1st convolution \rightarrow tile i of green feature map
- Run 2^{nd} convolution \rightarrow tile i of yellow feature map
- Store tile i of yellow feature map to remote memory

- Load tile i of blue feature map from remote memory
- Run 1st convolution \rightarrow tile i of green feature map
- Run 2^{nd} convolution \rightarrow tile i of yellow feature map
- Store tile i of yellow feature map to remote memory

Problem: 3x3 convolution requires margins

Solution: Bigger blue and green tiles

Problems:

- Load more data for the first (blue) layer
- Compute more data for the intermediate (green) layer

Consider a long chain of convolutions. How many stages of forwarding do you want?

- Forwarding tiles through as many layers as possible avoids dumping to remote memory
- This causes the overlaps to grow
 - More data to load for the first layer
 - Redundant processing

# of Convolutions	Feature Map Tiling	Bandwidth	Bandwidth per convolution	Operations per convolution	Energy per convolution
2	3x4	+6%	-47%	+5%	-30%
3	3x4	+12%	-63%	+10%	-39%
4	3x4	+17%	-71%	+16%	-43%
5	4x4	+29%	-74%	+26%	-42%

# of Convolutions	Feature Map Tiling	Bandwidth	Bandwidth per convolution	Operations per convolution	Energy per convolution
2	3x4	+6%	-47%	+5%	-30%
3	3x4	+12%	-63%	+10%	-39%
4	3x4	+17%	-71%	+16%	-43%
5	4x4	+29%	-74%	+26%	-42%

# (of Convolutions	Feature Map Tiling	Bandwidth	Bandwidth per convolution	Operations per convolution	Energy per convolution
2	2 Overlaps are so big we need smaller tiles to fit in local memory		+6%	-47%	+5%	-30%
3			+12%	-63%	+10%	-39%
4		3x4	+17%	-71%	+16%	-43%
5		4x4	+29%	-74%	+26%	-42%

Tiling and increasing receptive fields

- The trade-off between I/O and compute power leads to a U-shaped behavior
- The trade-off requires an optimization mechanism in the compiler
- In our toy example, all the convolutions are identical
- In a real CNN, the convolutions are different, so the optimization problem is not one-dimensional

More constraints to take into account:

- Some hardware will prefer vertical tiling for memory access
 - Increases overlap sizes

• Some hardware will impose constraints on tile size (multiple of a given number)

Out-of-scope ways to deal with overlaps:

- Multi-core processing \rightarrow hardware considerations and system complexity
- Keep overlap data instead of loading/computing again: takes up memory and requires memory fragmentation management → system complexity

Filters management

Option 1: reload the filters from remote to local memory for each tile

 \rightarrow wasted bandwidth

Option 2: keep the filters of all convolutions in local memory while processing all the tiles

- \rightarrow wasted space in the local memory
- \rightarrow may increase the tiles number

Filters management

- No single strategy is the best all the time
- Choosing the right strategy can save up to 20% energy
- In practice, the problem is even more complicated due to different convolutions through the network
- The compiler should take the decision to keep/reload the filters for each convolution independently

Case study of different modern convolutional neural networks

embedded VISICN Summit

Skip connections were introduced in the ResNet paper as a way to facilitate back propagation

 Forwarding becomes more challenging: one strives to keep both main path and skip connection in local memory

Intensive usage in DenseNet

• Up to 6 skip connections alive simultaneously

embedded VISICN summit

U-net adds skip connections to encoder-decoder structure to improve quality of segmentation

Ronneberger 2015.

Skip connections – segmentation networks

It can be mixed with residual blocks

Inverted bottleneck

embedded VISICN SUMMIT

- Inverted bottleneck introduced in MobileNet family
- Splitting the 3x3 convolution into 3x3 depthwise convolution + 1x1 convolution reduces the amount of parameters
 - Can more easily be kept in memory and/or reloaded
 - 1x1 convolutions don't create overlaps
- Skip connection on thinner feature map to minimize memory impact

Conclusion

- Memory management is a complicated optimization problem
- The compiler affects many performance indices, in particular power and runtime
- The tradeoff is not intuitive and requires some evaluation mechanism

How do we do it?

- Map all the performance indices (power, runtime...) to a single cost
 - The mapping may depend on the use case
- The compiler is able to analyze its decisions and evaluate the cost
- The compiler optimizes memory management to minimize the cost

Conclusion

What we didn't cover:

- Pre-fetching for runtime reduction
- Multicore edge devices
- We described fixed hardware and fixed network. We actually co-design:
 - Memory size, processing throughput, hardware limitations
 - Network design to avoid access to remote memory
 - Use of network architecture search
 - Quantization and pruning to avoid access to remote memory
 - Choice of bit-width and pruning rate per layer

He, Kaiming, et al. "Deep residual learning for image recognition." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2016.

Huang, Gao, et al. "Densely connected convolutional networks." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2017.

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." *International Conference on Medical image computing and computer-assisted intervention*. Springer, Cham, 2015.

https://github.com/Nishanksingla/UNet-with-ResBlock

Sandler, Mark, et al. "Mobilenetv2: Inverted residuals and linear bottlenecks." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2018.

