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* Introduction

* Tiling and forwarding

* Filters management

e (Case study of different modern convolutional neural networks

e Conclusion
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Counting the 1/0 in the TOps per Watt KPI VISI- N

summit

Power consumption is composed of:
 Compute power: perform the arithmetic computations

e |/O power: bring the data to the compute engine and back

For convolutional neural networks, I/O power can be higher than compute

The compiler must optimize the memory management

Scope: convolutional neural network (CNN) acceleration
* Focus on convolutions
 Assume the network is fixed (and quantized, pruned...)

* Inference only

Phmsunce — 3
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Description-of the working model VISI N
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What is a convolution?

Filter Filter
* Input: feature map and filters

* Apply: multiply and accumulate

e Output: feature map

CNN can be processed by CPU, DSP, GPU, NPU/TPU
* These often have multiple cores

* These have multiple levels of memories (cache and
scratch-pad)

@ © 2020 Samsung 4
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Description-of the working model VISI N
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Simplified toy example:

Processing
* Single processing core unit
* Small local memory with “free”
access and big remote memory
with expensive access
Remote memory contains: Local memory
* Input and output feature maps H Filters
Remote memory ConvM

e Convolution filters

e Intermediate feature maps (if
needed)

Phmsunce — s
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Typical orders of magnitude for NPU VISI N
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Feature map size [B]T

e The memory management problem
depends on the relative size of:

100M —+

* The local memory of the processor ™7

Automotive

* The typical feature map of the
network

M —+

* Our working point: 100k~

Feature map size ™ o

10 * Local memory size

" Local memory size [B]

Phmsunce — e
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Tiling. and Forwarding VISI N
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How to overcome the small memory size:

* Split the input feature map into smaller Processing

parts = tiles ”;“t

Convii

Ea OFM (not in
mem)

* Apply the convolution on the input feature

IFM| (not in mem)

map tile
—> Creates an output feature map tile . ) Output feature
. ] Input feature Local memory map tile
The output feature tile can be either: map tile T l it
lneers

* Written in remote memory Remote memory — Conv M
* Used for the next convolution o o/
- This is called forwarding o 4

Phmsunce —
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How to tile and forward VISI N
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How does the compiler tile and forward to minimize power
consumption?

Key optimization parameters:

* Power consumption: bandwidth (I/0) + compute

- Focus of this talk
* Processing throughput (operations/second)
* Chip area = cost

» System complexity, flexibility and maintenance

Phmsunce — 9
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Tiling.and increasing receptive fields VIS N
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2 convolutions with 3x4 tiling. Without access to remote memory in the middle (forwarding)

# 4 A : A
—remote P - : —= remoteP>
memory I | - !‘7" memory
Foriin[1-12]:
°| Load tile i of blue feature map from remote memory |

* Run 15t convolution - tile i of green feature map
e Run 2" convolution = tile i of yellow feature map

» Store tile i of yellow feature map to remote memory

@ © 2020 Samsung
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Tiling.and increasing receptive fields VIS N
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2 convolutions with 3x4 tiling. Without access to remote memory in the middle (forwarding)

- o - - To
e remote P =m remoteP>
memory " - - !‘7" memory

Foriin[1-12]:

* Load tile i of blue feature map from remote memory

°| Run 1%t convolution = tile i of green feature map

e Run 2" convolution = tile i of yellow feature map

» Store tile i of yellow feature map to remote memory

@ © 2020 Samsung
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Tiling.and increasing receptive fields VIS N
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2 convolutions with 3x4 tiling. Without access to remote memory in the middle (forwarding)

A

# 4 A | 4 A
—remote P I -‘ : —= remoteP>
memory W I | - L !‘7" memory

Foriin[1-12]:

e
A
n
Al

* Load tile i of blue feature map from remote memory

°| Run 1%t convolution = tile i of green feature map

e Run 2" convolution = tile i of yellow feature map

» Store tile i of yellow feature map to remote memory

@ © 2020 Samsung
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Tiling.and increasing receptive fields VIS N
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2 convolutions with 3x4 tiling. Without access to remote memory in the middle (forwarding)

il | - q
—remote P I —= remoteP>
memory W I | - L !‘7" memory

Foriin[1-12]:
* Load tile i of blue feature map from remote memory

* Run 15t convolution - tile i of green feature map

. |Run 2"d convolution = tile i of yellow feature map

» Store tile i of yellow feature map to remote memory

@ © 2020 Samsung
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Tiling.and increasing receptive fields VIS N
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2 convolutions with 3x4 tiling. Without access to remote memory in the middle (forwarding)

- o - - To
—= remoteP>
2

|l L L memory

Foriin[1-12]:

* Load tile i of blue feature map from remote memory

* Run 15t convolution - tile i of green feature map

. |Run 2"d convolution = tile i of yellow feature map

» Store tile i of yellow feature map to remote memory

@ © 2020 Samsung
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Tiling.and increasing receptive fields VIS N
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2 convolutions with 3x4 tiling. Without access to remote memory in the middle (forwarding)

4 4 ; Y - ’
—remote P> I -I —- remote-}
memory W - f" memory

Foriin[1-12]:

™

1

* Load tile i of blue feature map from remote memory
* Run 15t convolution - tile i of green feature map

e Run 2" convolution = tile i of yellow feature map

. |Store tile i of yellow feature map to remote memory

@ © 2020 Samsung
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2 convolutions with 3x4 tiling. Without access to remote memory in the middle (forwarding)

From
—remote P>
memory

Problem: 3x3 convolution requires margins

@ © 2020 Samsung
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Tiling and increasing receptive fields VISI N
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2 convolutions with 3x4 tiling. Without access to remote memory in the middle (forwarding)

From - -~ To
— remote P> -=- remoteP>
=
memory - "~ memory

Solution: Bigger blue and green tiles
Problems:
 Load more data for the first (blue) layer

 Compute more data for the intermediate (green) layer

Phmsunce —
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Tiling and increasing receptive fields VISI N
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O O

Consider a long chain of convolutions. How many stages of forwarding do you want?

* Forwarding tiles through as many layers as possible avoids dumping to remote
memory

* This causes the overlaps to grow
 More data to load for the first layer

 Redundant processing

@ © 2020 Samsun g 18




2 convolutions

From remote
memory

memory

2 3x4 +6% A7% +5% -30%
| N\ \\ Iﬂ | N,
3 3 N\ +12] \_ -63% /0% 39 N\
4| Break the feature map | 4 Loadthe 114 Compute the Less |/O
into 12 to fit in memory overlaps overlaps More compute
5 OX +29% 4% FZ0% O Z7%

All numbers are compared to “no forwarding”




3 convolutions T TR VIS n
1131333585R8 sy vl

To remote
mem ory

2 3x4 +6% A7 % +5% -30%

From remote
memory

3 3x4 +12% -63% +10% -39%

4 3x4 +17% -11% +16% -43%

S 4x4 +29% -14% +26% -42%

All numbers are compared to “no forwarding”




4 convolutions T TR VIS n
1131333585R8 sy vl

To remote
mem ory

From remote
memory

2 3x4

+6%

A7%

+5%

-30%

3 3x4

+12%

-63%

+10%

-39%

4 3x4

+17%

-11%

+16%

-43%

5 Axdh

+29%

“74%

+26%

-42%

All numbers are compared to “no forwarding

Shsung
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5 convolutions
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e S el el e T

2 Qverlaps are so bigwe | +6% 47% +5% -30%
need smaller tiles to fit

To remote
memory

From remote
memory

E +12% 63% +10% 39%
| in local memory
4 3x4 +17% 71% +16% 43%
5 ax4 +29% 74% +26% 42%

”

All numbers are compared to “no forwarding
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Tiling and increasing receptive fields VISI N
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* The trade-off between |I/O and compute
power leads to a U-shaped behavior

—s— Energy per convolution [J]

* The trade-off requires an optimization
mechanism in the compiler

* In our toy example, all the convolutions
are identical

Energy [J]

* |n areal CNN, the convolutions are
different, so the optimization problem is
not one-dimensional

Minimal energy

> 4 6 8 10 12
Number of convolutions

Phmsunce — '
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Tiling and increasing receptive fields VISI N
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More constraints to take into account:
* Some hardware will prefer vertical tiling for memory access

* Increases overlap sizes

!
/(

|

« Some hardware will impose constraints on tile size (multiple of a given number)
Out-of-scope ways to deal with overlaps:
* Multi-core processing = hardware considerations and system complexity

* Keep overlap data instead of loading/computing again: takes up memory and requires memory
fragmentation management = system complexity
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Filters management

Filters for 1
convolution

Local memory

Option 1: reload the filters from remote to
local memory for each tile

- wasted bandwidth

Shsung

2020

embedded

Summit

Filters for

—Load once=p- :
convolution 1

o
Q\OO \,\)(e

. ea
Filters for < (0’596
convolution n

Local memory

Option 2: keep the filters of all convolutions
in local memory while processing all the tiles

— wasted space in the local memory

— may increase the tiles number

© 2020 Samsung 26
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* No single strategy is the best all the time —— Energy with "reload filters" []]
—— Energy with "keep filters" []]

* Choosing the right strategy can save up to
20% energy

* In practice, the problem is even more
complicated due to different convolutions

through the network gﬂ
(a
 The compiler should take the decisionto ™ T —'K:;:;:*
keep/reload the filters for each
convolution independently
0 100 200 300 400 500

@ Local Memory Size [kB]
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Skip connections — residual block VISI N
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Skip connections were introduced in the ResNet paper as
a way to facilitate back propagation Fx)

* Forwarding becomes more challenging: one strives
to keep both main path and skip connection in local
memory

Intensive usage in DenseNet

* Up to 6 skip connections alive simultaneously

@ © 2020 Samsun g Huang 2017 i
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Skip connections — segmentation networks
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U-net adds skip connections to encoder-decoder structure to
improve quality of segmentation

61 64
123 64 64 2
_input output
'mﬂﬁg > : N bl st segmentation
. map
HE ki &
S = F I
¥ 155 128
256 128
3 [==] O o —
¥ 256 256 s17 758 t
E > > EI:IEIEI :cnma{a, RelLlU
¥ 512 sz wzs sz §7 T copy and crop
sl — [ BT ¥ max pool 2x2
B - $ & B # up-conv 2x2
& & = COmy 1x1

Ronneberger 2015.
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Skip connections — segmentation networks |
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It can be mixed with residual blocks

B 12 81 g4 B 1
concatenate »
8 i®
k] N I
2 g kS
4
Llnsalrplingt
12 |6 128 128 125
concatenste
B
]
up—samulml'
56 51 256 256 256
concatenate = 3

3*3 conv, SAME

‘ padding, Batch
Normalization, Relu

W4 s1z 512 3 su

F Ff2 | .
- ; )
rl#fgl (up-sampling + 2*2 conv)
& &

OR

F-n*n F/2

C
:"I (Transpose-convolution)
[=
~

‘ Max pool 2*2

Singla 2019
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* Inverted bottleneck introduced in MobileNet
family

* Splitting the 3x3 convolution into 3x3 depthwise
convolution + 1x1 convolution reduces the
amount of parameters

U6, Dwise

e Can more easily be kept in memory and/or
reloaded

. Sandler 2018
e 1x1 convolutions don’t create overlaps

e Skip connection on thinner feature map to
minimize memory impact

Phmsunce — .
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Conclusion VISI N
summit

e Memory management is a complicated optimization problem
 The compiler affects many performance indices, in particular power and runtime
* The tradeoff is not intuitive and requires some evaluation mechanism
How do we do it?
* Map all the performance indices (power, runtime...) to a single cost
 The mapping may depend on the use case
* The compiler is able to analyze its decisions and evaluate the cost

 The compiler optimizes memory management to minimize the cost

Phmsunce — .
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What we didn’t cover:
* Pre-fetching for runtime reduction
 Multicore edge devices
 We described fixed hardware and fixed network. We actually co-design:
 Memory size, processing throughput, hardware limitations
* Network design to avoid access to remote memory
* Use of network architecture search
* Quantization and pruning to avoid access to remote memory

e Choice of bit-width and pruning rate per layer

Phmsunce — .
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