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Counting the I/O in the TOps per Watt KPI

• Power consumption is composed of:

• Compute power: perform the arithmetic computations

• I/O power: bring the data to the compute engine and back

• For convolutional neural networks, I/O power can be higher than compute

• The compiler must optimize the memory management

• Scope: convolutional neural network (CNN) acceleration

• Focus on convolutions

• Assume the network is fixed (and quantized, pruned…)

• Inference only
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Description of the working model

What is a convolution?

• Input: feature map and filters

• Apply: multiply and accumulate

• Output: feature map

CNN can be processed by CPU, DSP, GPU, NPU/TPU

• These often have multiple cores

• These have multiple levels of memories (cache and 
scratch-pad)
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Description of the working model

Simplified toy example:

• Single processing core

• Small local memory with “free” 
access and big remote memory 
with expensive access

Remote memory contains:

• Input and output feature maps

• Convolution filters

• Intermediate feature maps (if 
needed)
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Typical orders of magnitude for NPU

• The memory management problem 
depends on the relative size of:

• The local memory of the processor 

• The typical feature map of the 
network

• Our working point:

Feature map size ~

10 * Local memory size
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Tiling and forwarding
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Tiling and Forwarding

How to overcome the small memory size:

• Split the input feature map into smaller 
parts → tiles

• Apply the convolution on the input feature 
map tile

→ Creates an output feature map tile

The output feature tile can be either:

• Written in remote memory

• Used for the next convolution

→ This is called forwarding
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How to tile and forward

How does the compiler tile and forward to minimize power 
consumption?

Key optimization parameters:

• Power consumption: bandwidth (I/O) + compute

→ Focus of this talk

• Processing throughput (operations/second)

• Chip area → cost

• System complexity, flexibility and maintenance
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2 convolutions with 3x4 tiling. Without access to remote memory in the middle (forwarding)

For i in [1-12]:

• Load tile i of blue feature map from remote memory

• Run 1st convolution → tile i of green feature map

• Run 2nd convolution → tile i of yellow feature map

• Store tile i of yellow feature map to remote memory
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2 convolutions with 3x4 tiling. Without access to remote memory in the middle (forwarding)

Problem: 3x3 convolution requires margins 
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2 convolutions with 3x4 tiling. Without access to remote memory in the middle (forwarding)

Solution: Bigger blue and green tiles

Problems:

• Load more data for the first (blue) layer

• Compute more data for the intermediate (green) layer
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Tiling and increasing receptive fields

Consider a long chain of convolutions. How many stages of forwarding do you want?

• Forwarding tiles through as many layers as possible avoids dumping to remote 
memory

• This causes the overlaps to grow

• More data to load for the first layer

• Redundant processing
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2 convolutions

# of Convolutions Feature Map

Tiling

Bandwidth Bandwidth per 

convolution

Operations per 

convolution

Energy per 

convolution

2 3x4 +6% -47% +5% -30%

3 3x4 +12% -63% +10% -39%

4 3x4 +17% -71% +16% -43%

5 4x4 +29% -74% +26% -42%

19
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3 convolutions
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4 convolutions
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5 convolutions

# of Convolutions Feature Map

Tiling

Bandwidth Bandwidth per 

convolution

Operations per 

convolution

Energy per 

convolution

2 3x4 +6% -47% +5% -30%

3 3x4 +12% -63% +10% -39%

4 3x4 +17% -71% +16% -43%

5 4x4 +29% -74% +26% -42%
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Tiling and increasing receptive fields
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• The trade-off between I/O and compute 
power leads to a U-shaped behavior

• The trade-off requires an optimization 
mechanism in the compiler

• In our toy example, all the convolutions 
are identical

• In a real CNN, the convolutions are 
different, so the optimization problem is 
not one-dimensional
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Tiling and increasing receptive fields

More constraints to take into account:

• Some hardware will prefer vertical tiling for memory access

• Increases overlap sizes

• Some hardware will impose constraints on tile size (multiple of a given number)

Out-of-scope ways to deal with overlaps:

• Multi-core processing → hardware considerations and system complexity

• Keep overlap data instead of loading/computing again: takes up memory and requires memory 
fragmentation management → system complexity
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Filters management
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Filters management

Option 1: reload the filters from remote to 
local memory for each tile

→ wasted bandwidth
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Option 2: keep the filters of all convolutions 
in local memory while processing all the tiles

→wasted space in the local memory

→may increase the tiles number
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Filters management

• No single strategy is the best all the time

• Choosing the right strategy can save up to 
20% energy

• In practice, the problem is even more 
complicated due to different convolutions 
through the network

• The compiler should take the decision to 
keep/reload the filters for each 
convolution independently
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Case study of different modern 
convolutional neural networks
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Skip connections – residual block

Skip connections were introduced in the ResNet paper as 
a way to facilitate back propagation

• Forwarding becomes more challenging: one strives 
to keep both main path and skip connection in local 
memory

Intensive usage in DenseNet

• Up to 6 skip connections alive simultaneously
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He 2016
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Skip connections – segmentation networks

U-net adds skip connections to encoder-decoder structure to 
improve quality of segmentation
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Ronneberger 2015.
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Skip connections – segmentation networks

It can be mixed with residual blocks
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Singla 2019
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Inverted bottleneck

• Inverted bottleneck introduced in MobileNet
family

• Splitting the 3x3 convolution into 3x3 depthwise
convolution + 1x1 convolution reduces the 
amount of parameters

• Can more easily be kept in memory and/or 
reloaded

• 1x1 convolutions don’t create overlaps

• Skip connection on thinner feature map to 
minimize memory impact
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Conclusion

• Memory management is a complicated optimization problem

• The compiler affects many performance indices, in particular power and runtime

• The tradeoff is not intuitive and requires some evaluation mechanism

How do we do it?

• Map all the performance indices (power, runtime…) to a single cost

• The mapping may depend on the use case

• The compiler is able to analyze its decisions and evaluate the cost

• The compiler optimizes memory management to minimize the cost
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Conclusion

What we didn’t cover: 

• Pre-fetching for runtime reduction

• Multicore edge devices

• We described fixed hardware and fixed network. We actually co-design:

• Memory size, processing throughput, hardware limitations

• Network design to avoid access to remote memory

• Use of network architecture search

• Quantization and pruning to avoid access to remote memory

• Choice of bit-width and pruning rate per layer
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