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To build the future,
you need to see it.

-Matthew Putman, CEO
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Introduction to
Reinforcement Learning
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Control Feedback Loops
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Reinforcement Learning Algorithms
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Source: https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

Given the volume of options, choosing the appropriate algorithm for the problem statement is key.

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
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We’ll focus on the model-free variety, as imaging systems exist in noisy, difficult-to-model contexts.

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
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Explanation of Model-Free Reinforcement Learning

• Model-Free reinforcement learning allows us to learn an environment as we traverse it.

• If we have an imperfect representation of the model to act on, that is okay, as we anticipate 
improving our strategy as we continue.

• This plays well with physical measurements as it requires less exact measurements for a 
prediction of optimal actions.

• Reinforcement learning in general does not play well with real, physical environments because 
it requires a huge volume of training examples.

• Reducing the required training examples is a huge focus of research in reinforcement 
learning, and a particular focus in physical applications.

• Imaging systems are a subset of physical environments. An imaging system is meant to 
capture rich, albeit abstract representations of that environment. The RL algorithm is 
meant to map that to a policy for choosing optimal actions within the environment.
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Application Areas for 
Reinforcement Learning
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Simple Environments
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Sources: 

1. (Left) Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning." arXiv preprint arXiv:1312.5602 (2013).

2. (Right) https://gym.openai.com/envs/CartPole-v0/

https://gym.openai.com/envs/CartPole-v0/
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Complex Environments
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Sources: 

1. (Left) Berner, Christopher, et al. "Dota 2 with large scale deep reinforcement learning." arXiv preprint arXiv:1912.06680 (2019).

2. (Right) Baker, Bowen, et al. "Emergent tool use from multi-agent autocurricula." arXiv preprint arXiv:1909.07528 (2019).
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Vision Based Systems
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Source: 

1. https://gizmodo.com/rock-balancing-robots-could-build-our-future-habitats-o-1795814087

https://gizmodo.com/rock-balancing-robots-could-build-our-future-habitats-o-1795814087
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Reinforcement Learning for 
Imaging Systems
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Adjustment to the Reinforcement Learning Structure
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• The environment must be 
effectively sampled by an image 
acquisition system.

• This state must include the 
requisite information for control 
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State Embedding

• For most image-based machine learning, pixel values of images are fed into 
convolutional layers. The output of these layers are called the features of the image.

• Feature vectors are fundamentally the states of image-based reinforcement learning 
as well, but the training of their convolutional weights can be prohibitively costly 
without GPU clusters.

• This is distinct from other image classifiers in that a very clear path exists for 
determining, from a static set of examples, the appropriate network architecture and 
adjust its dimensions using A/B testing.

• In RL applications, it may be prudent to try several different architectures, each 
requiring subsequent tuning. For this reason, reducing the dimensionality of the input 
state is helpful in faster iteration through model types.

15
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State Embedding (cont’d)

• We can leverage unsupervised methods to train an encoder out of the loop and use scalar targets or human-led instruction for 
ensuring essential information is maintained.

• This capitalizes on the speed with which conventional classifiers can be trained, while allowing flexibility of the network 
architecture for the agent.

• It is analogous to compressing the image and using only a combination of values which provide the highest information content.

• Furthermore, we can target certain areas or features by building a loss function that penalizes low information through-put for 
our desired content.
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Challenges for Using 
Reinforcement Learning
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Challenges in Physical Environments

• Reinforcement learning in physical environments suffers all of the same problems, but 
training samples are billions of times more temporally expensive to generate.

• Physical data is often noisy and actuation setpoints are often imprecise.

• The underlying dynamics of physical systems have been well studied in the field of 
controls, and thus the application of reinforcement learning is often meant to replace 
a system that can’t be readily modeled or controlled.

• Physical environments suffer more severe consequences for unfettered agent 
exploration, involving damage to equipment or observers.
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Reduction of Combinational Complexity

• The initial challenge to overcome in physical systems is the acquisition of sufficient 
data samples to train the agent. One billion samples, even for reasonably fast 
processes, often extends past the span of many lifetimes.

• However, some reinforcement algorithms applied to simple environments with 
appropriately scaled networks have shown convergence on the order of hundreds or 
thousands of samples. While these are still costly volumes in some contexts, they are 
not untenable at face value.

• The key to achieving this type of sample efficiency is appropriately defined problems 
to only consider the actuation points that solve the reward, and likewise a minimized 
state definition for consideration by the agent. 
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Case Study:
Additive Manufacturing Feedback 

using Image Data
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Case Study Overview

• Additive Manufacturing is a burgeoning field of manufacturing that uses material deposition, curing or fusion to 
build geometries that are unattainable with other fabrication methods. It is commonly referred to as 3D Printing.

• Its major hurdle for transitioning from prototype use-cases to industrial applications is, among other things, 
inconsistency of the material properties after printing. The inconsistency is caused by printing errors such as 
improper material deposition

• The aim of this case study was to build a part (shown to the right) with the most consistent tensile strength. The 
part was designed to be susceptible to printing errors in the cross-sectional plane.

• The allowable actions corresponded to adjusting the material flow and the speed of the print.

• Two test cases were considered for RL feedback using Images:

• Discrete Error Correction

• An error was injected at a specific layer, and the agent was allowed to make corrections on 
three subsequent layers.

• The layer number as well as the error as classified by an image classifier was used as the state 
definition.

• Continuous Error Correction

• No errors were injected into the prints, but instead corrections were allowed at all layers.

• The state was defined as the output of an autoencoder trained on a two-dimensional Gaussian 
loss function centered around the layer image.
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Printer Modification with Imager Assembly
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Example of Acquired Image
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Feedback Loop Structure
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Discrete Correction Overview

• Discrete errors were artificially injected into the print by restricting the flow rate of 
plastic onto a particular layer.

• This error was classified by an image classifier trained with data from images of 
similarly restricted flow at certain degrees.

• The agent could adjust only three layers after the injected error.

• Baseline data was collected for the nominal (median) tensile strength and the median 
tensile strength of the specimen without correction.

• Finally, the resulting strength of the part after correction was measured.

25



© 2020 Nanotronics

Validation Results (Discrete Correction)
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Continuous Correction Overview

• Discrete errors were no longer injected into the print, and instead the printer would 
print normally.

• Hundreds of thousands of images were captured of the printed layers, and the results 
were fed through a feature extraction encoder.

• The feature vectors were then used as the state for a reinforcement learning agent 
trained in an offline, off-policy fashion. 

• A baseline was generated for a distribution of the expected tensile strength, and this 
distribution was confirmed by an outside measurement laboratory.

• The results from the corrective agent were compared against these.
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Validation Results (Continuous Correction)
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Insights and Conclusions
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A Path Forward for the Next Industrial Revolution
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• Image data is rich with information, and cameras are readily available in many form factors.

• While reinforcement learning in the context of physical systems is costly, an intelligent 
approach to dimensional reduction ensures the problem is tractable.

• We were able to construct an imager for an additive manufacturing system that provided a 
feedback loop to a reinforcement learning agent to infer corrective actions that:

1. Classified and corrected discrete errors.

2. Abstracted layer images to features for continual correction of minor errors.

• This work is applicable far beyond additive manufacturing, which was chosen for its widely 
transferrable principles. Industrial processes with defects or errors detectable through images 
can all be considered in this structure.
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Additional Resources

Topics Covered

RL: Open AI – Spinning Up

https://spinningup.openai.com/en/latest/

Auto-Encoders

http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/

Additive Manufacturing

https://additivemanufacturing.com/basics/

2020 Embedded Vision Summit

“Imaging Systems for Applied 

Reinforcement Learning Control”

Details (Time, Date, etc.)
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https://www.khronos.org/openvx
https://www.khronos.org/openvx
https://www.khronos.org/openvx

