

Deep Learning for Manufacturing Inspection: Case Studies

Dr. Stephen Se FLIR Systems, Inc. September 2020

Outline

- Manufacturing Inspection Applications
- Deep Learning Workflow
- Case Studies
- Best Practices

Manufacturing Inspection

Deep Learning Revolution

- Machine Vision (MV) industry shifting from traditional rule-based approach to DL
 - Traditional methods require handcrafted algorithms by skilled engineers with programming & vision expertise
 - DL can adapt to new examples without re-programming
 - Tedious programming for identifying different defects no longer necessary

Source: Cognex

4

Deep Learning MV Applications

- Manufacturing inspection, defect detection, classification, segmentation
- Textile inspection example
 - Traditional methods do not perform well after years of development
 - DL outperforms them after a few minutes of training

Textile inspection

Manufacturing Inspection Applications

- Well-controlled setup and lighting
 - Relatively few training examples
 - Training on standard laptop/desktop
- Commercial software
 - End-to-end solution: annotation GUI, training & inference tools
 - Cognex ViDi, MVTec HALCON, Adaptive Vision Studio
- Open source tools
 - Tensorflow, Caffe

Source: Cognex

Source: EPIC Vision Systems

Deep Learning vs Traditional Methods

	Deep Learning	Traditional Methods
Typical applications	 Surface inspection (cracks, scratches) 	Dimensional measurement
	 Food, plant, wood inspection 	Code reading
	Textile inspection	Robot guidance
	 Plastics, injection moulding 	Precision alignment
Typical characteristics	 Deformable objects 	Rigid objects
	 Variable orientation 	Fixed orientation
	 Vague specification with examples of good & bad parts 	 Formal specification with tolerances

Source: Cognex

Hybrid Method = Deep Learning + Traditional Method

Deep Learning Workflow

Workflow and Open Source Tools

Data Collection & Labeling

Data Collection

- Capture images in similar setup as deployment such as lighting, camera, optics
- Generate synthetic data no labeling needed
- Accurate Data Labeling
 - For classification applications, divide training images into folders corresponding to the class
 - For detection applications, label the classes & bounding boxes using tools such as LabelImg

Screenshot from LabelImg https://github.com/tzutalin/labelImg

Data Augmentation

- Expand and diversify training data by data augmentation
 - Perform image processing on collected images such as rotation, scaling, changing brightness, etc.
 - Could improve inference accuracy without collecting more training images
 - Can be done before training, or on-the-fly during training

11

Transfer Learning

- Typical DL models have millions of parameters & take weeks to train
- Transfer learning is a technique to shortcut a lot of this work
 - Takes a fully-trained model and re-trains it for new tasks
 - Requires less training data, much faster to train

12

Recent Trend

- Smaller CNN (Convolutional Neural Network)
 Models
 - More practical for mobile & embedded vision applications
 - Less parameters trained with less training data
 - Less bandwidth to send a new model from cloud to edge
 - Achieve similar accuracy as larger models

Model	Million Mult- Adds	Million Parameters	ImageNet Accuracy
AlexNet	720	60	57.2%
GoogleNet	1550	6.8	69.8%
VGG 16	15300	138	71.5%
MobileNet V1 (1.0, 224)	569	4.24	70.6%
ShuffleNet	524	5	70.9%
MobileNet V2 (1.0, 224)	300	3.47	71.8%
NasNet (4@1056)	564	5.3	74.0%

Case Studies

Pills Inspection

- Classify between good and bad pills
 - Bad scratch, dirt, chip or visible contamination
- Data collection in a controlled environment
 - Black background to increase visibility of pills
 - Select lens and camera height to capture fine details on pills
 - Good and bad images in separate folders

Good examples

Bad examples

15

Pills Inspection

- Data augmentation to generate more training images from the collected data
 - Using open-source Augmentor library https://github.com/mdbloice/Augmentor
 - Rotation, shearing, elastic distortion, perspective transform, chaining operations, ...

Augmentation examples

Pills Inspection

- Data collection: 37 good examples & 54 bad examples
- Data augmentation: ~10000 training images for each class
- Transfer learning with MobileNet V1
 - Last layer (classification) changed from 1000 to 2 classes
 - Proof-of-concept: 94% accuracy
- Large difference in confidence for same pill at different location
 - Could benefit from more data and/or better augmentation

Camera Case Inspection

Develop a deep learning solution for camera case inspection

18

Imaging Challenges

Camera exposure variation

Diffuse light vs directional light

Camera Case Inspection

Class	# of training images		
Good	61		
Bad	167		
Not Ready	127		

(x=539, v=485) ~ R:255 G:255 B:255

- Re-trained a pruned MobileNet V1 network
 - Keep the first 7 layers to retain low level image features
 - Classification layer changed from 1000 to 3 classes
 - Proof-of-concept: 97.3% accuracy, 24 fps

PCB Hand Soldering Inspection

- Develop a deep learning solution for PCB hand-soldering inspection
 - Classify good solder vs missing/bad solder
 - Inspect multiple regions of interests

21

Common Soldering Problems

Solder bridge

Stray solder spatters

Lifted pad

Untrimmed leads

All of the above!

PCB Hand Soldering Inspection

	ОК	NG		
ROI		missing solder	all other defects	Total
LED	30	21	29	80
GPIO	31	21	28	80
RJ Connector	35	20	25	80

GPIO

RJ Connector

NG

PCB Hand Soldering Inspection

- Re-trained a MobileNet V1 network for each ROI
 - Last layer (classification) changed from 1000 to 2 classes
 - Proof-of-concept: 95%+ accuracy

Classification vs Anomaly Detection

- Classification approach (supervised)
 - Considerable training data for different classes
 - For inspection application, there are typically many good examples but very few bad examples
 - Class imbalance even after augmentation
- Anomaly detection approach (unsupervised)
 - Only good examples needed to train a model
 - Segment pixels/regions that differ from the model
 - More complex than classification approach

Anomaly detection using U-Net

Best Practices

- Training images must resemble inference images
 - Consistent object positioning, lighting, camera, optics
- Optimizing physical setup can simplify problem
 - Color-related problem could be solved using monochrome camera
 - Camera with resolution & dynamic range to capture fine details
 - Lighting could help highlight differences between classes
 - Smaller network requires less training data & can train faster
- Consistency in image processing is crucial

Lessons Learned

- DL is revolutionizing machine vision industry
 - DL vs traditional methods
- DL is highly suitable for manufacturing inspection
 - Well-controlled setup and lighting
 - Relatively few training images and short training time
- DL inference on the edge is feasible
 - Smaller networks are practical for embedded vision applications

Resources

- Manufacturing inspection software and use cases
 - Cognex VisionPro ViDi
 - MVTec HALCON

- Adaptive Vision Studio
- SUALAB SuaKIT
- Tutorial: "How to build a deep learning classification system for less than \$600"
- Tutorial: "<u>Tips for creating training data for deep learning neural networks</u>"
- FLIR Firefly DL camera
 - Inference on the edge with integrated Intel Movidius VPU
 - https://www.flir.com/products/firefly-dl/

28

Questions?

