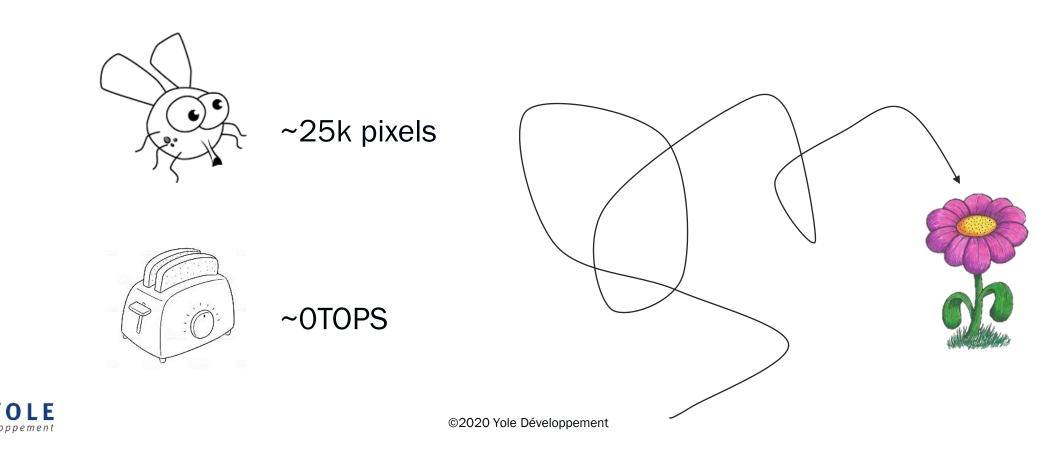
embedded VISIMN Summit

Market Trends in Automotive Perception: From Insect-Like to Human-Like Intelligence

Pierre Cambou Yole Développement September 2020

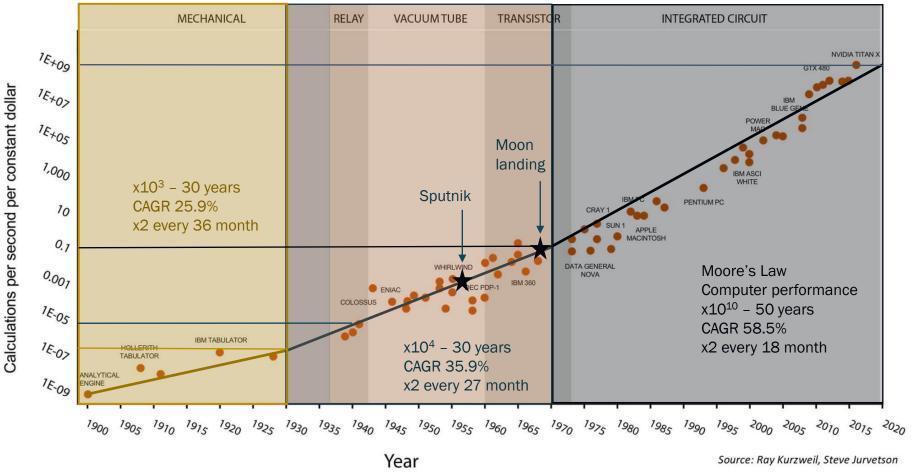

Développement

REMOVING THE HURDLES

The goal in automotive is to reach autonomy. Critical questions: when, where and how?

"The fly has the CPU of a toaster nonetheless it can do quite a lot"

Bruno Maisonnier Anotherbrain CEO



embedded

MOORE'S LAW FOR THE MARKETING MANAGER

Processing power per \$ is (was) doubling every 18 months

Advancements in digital electronics are strongly linked to Moore's law : microprocessor prices, memory capacity, sensor performance ...

Digital electronics has contributed to world economic growth in the late 20th and early 21st centuries.

Moore's law describes a driving force of technological and social change, productivity, and economic growth.

SEMICONDUCTOR PLAYERS INTO THE SCALING ROADMAP

embedded VISION SUMMIT

The end of Moore's Law economics?

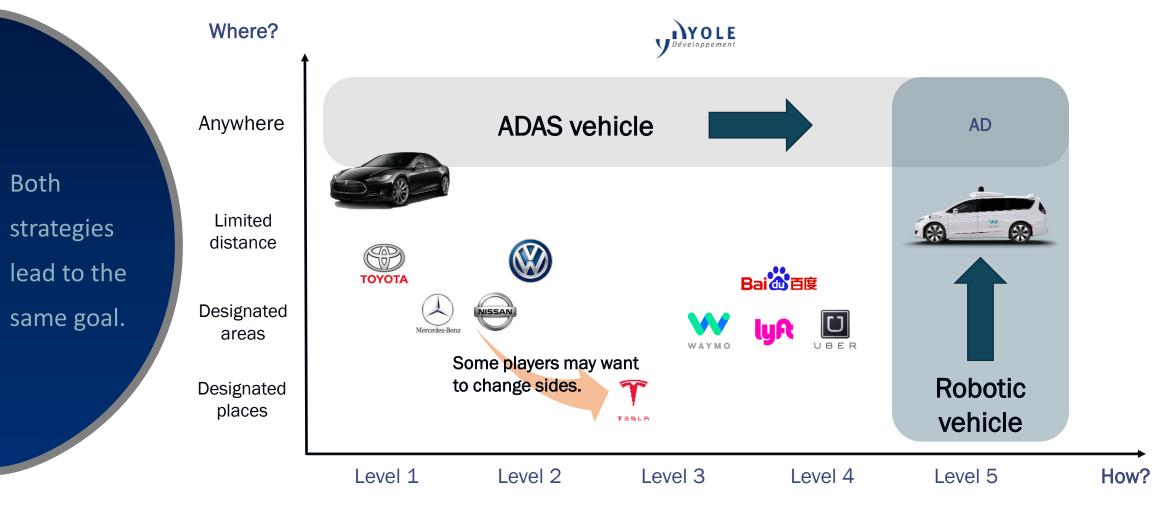
Déve

	Altis							÷*
-	DB Hitek	DB Hitek						
	Freescale	Freescale				/	J.	
	Fujitsu	Fujitsu					4	I
	Global Foundries	Global Foundries			\$/mm2			
	Grace	Grace						
	IBM	IBM			200m	m 30	00mm	450mm
	Infineon	Infineon	Fujitsu					
	Intel	Intel	Global Foundries		350nm 250nm 180nm	130nm 90nm 65nm 45nm	32nm 22nm 14nm	Lourtesy of Intel
	Panasonic	Panasonic	HLMC		350 250 180	130 90 65 45	32 22 14	
	Renesas	Renesas	IBM					courtesy of linter
	Samsung	Samsung	Intel					
	Seiko	Seiko	Panasonic					
	SMIC	SMIC	Renesas	Global Foundries			DLE	
	Sony	Sony	Samsung	HLMC				
	ST Microelectronics	ST Microelectronics	SMIC	IBM				
	Texas Instruments	Texas Instruments	ST Microelectronics	Intel	Global Foundries			
	Toshiba	Toshiba	Toshiba	Samsung	Intel	Intel		
	TSMC	TSMC	TSMC	ST Microelectronics	Samsung	Samsun	g	
	UMC	ИМС	UMC	тѕмс	тѕмс	TSMC		?
	180nm	90nm	45nm	28nm	14nm	7nm		35Å
	2002	2006	2010	2014	4	2018	4	2022
I	4 years	4 years	©2020 Yole Dével		4 years		4 years	
			82020 1010 Bever	opponione				

"Moore's Law" supported the growth of markets and technology in the semiconductor space for 50 years

It is now challenged from the technology standpoint but also the economics

This presentation is looking into some similar "law" that could be seen in the "More than Moore" paradigm, i.e. image sensors and cameras


Automotive is the first "sensing" market for image sensors, where cameras are used in combination with computing chips for automotive ADAS, but also in some robotic vehicle applications for autonomous driving (AD)

AUTONOMOUS VEHICLES — THE ROBOTIC DISRUPTION CASE

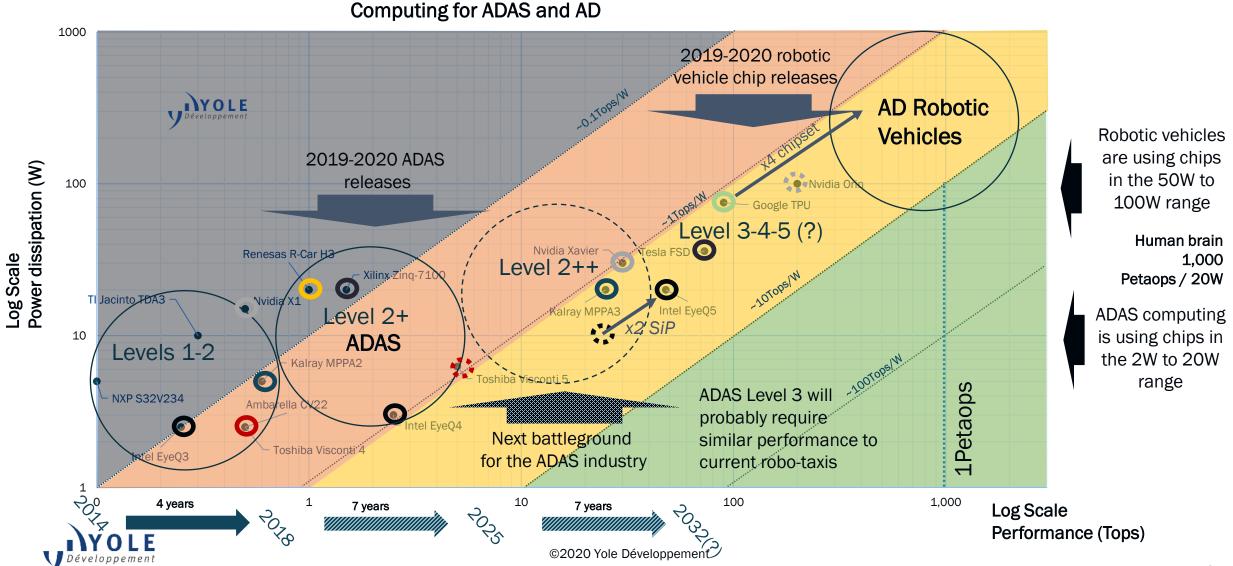
embedded VISION Summit

There are two distinct paths toward autonomous vehicles

AUTOMOTIVE (ADAS) VS ROBOTIC CARS (AD)

Développemen

Robotic cars use a different set of technologies than conventional cars



Neuromorphic Sensing & Computing

©2020 Yole Développement

AUTOMOTIVE (ADAS) VS ROBOTIC CARS (AD)

embedded

L Canagero for rehatig machility L youry yeals fr L @2000

"MORE THAN MOORE" LAW

For these two applications every technical choice is a tradeoff

Due to Moore's Law, players like Mobileye and Waymo were able to increase the processing power of their solutions by x2 every 24 months (at constant price)

From observation, the flux of camera data increases x2 only every 48 months

log 100 square of data flow NYOLE AD Robotic éveloppemen Only... Eve05 x12 Waymo x14 LR cameras 5Mp Sensor Data rate (Gbps) 10 2027(?) x8 LR cameras 5Mp Waymo x100 processing power EyeQ5 FSD x8 cameras 1.3Mp 2022 EveQ4 x3 cameras 1.3Mp 2017 1 EyeQ3 x1 camera 1.3Mp Each point is an observation of ADAS Sensor camera suite analysis & Computing power analysis 0 1 10 100 1,000 10,000 0 Processing power (Tops) log

Sensor Data rate (Gbps) vs Processing Power (Tops)

The flux of data fed to the AD system doubles every 48 months*

* The "More than Moore" law is twice slower than the Moore's law

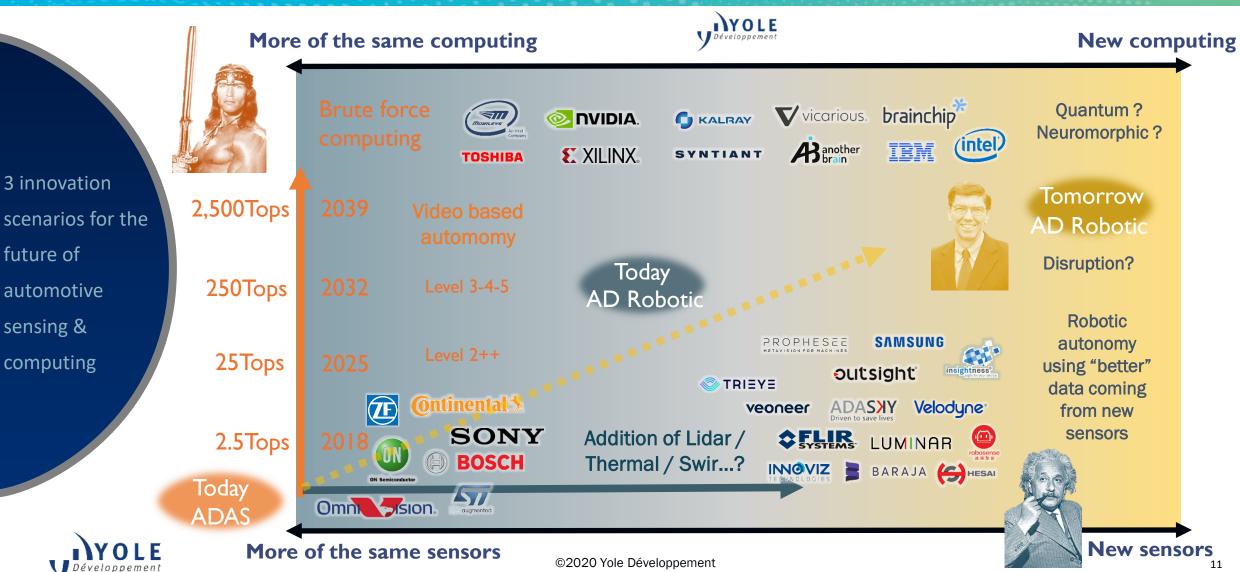
©2020 Yole Développement

AUTOMOTIVE MARKET TREND — ADAS TO AD

How many cameras for what processing power?

Flux of Processed data and processing power are correlated From 10 years of market analysis, seems like a "More than Moore law":

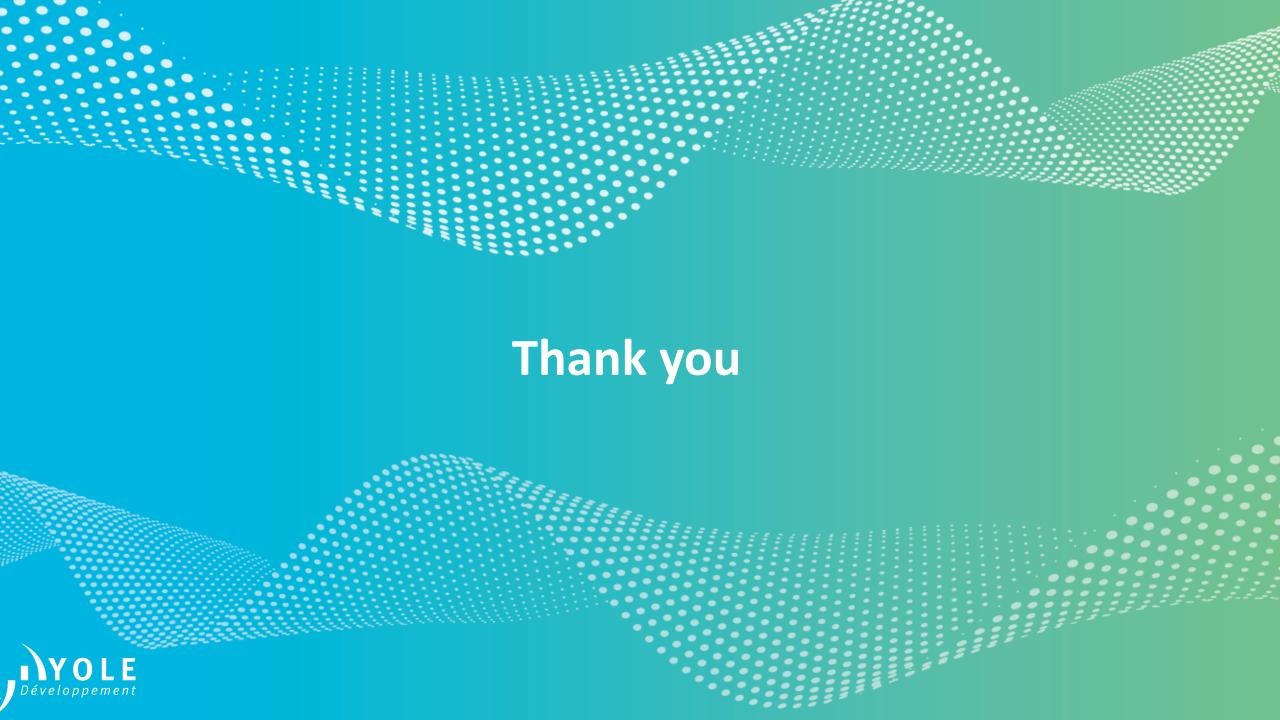
Computing power requirement increases with the square of data


Current AD system design will be heavily limited by the ability to increase processing power

- Computing performance improvement will be in great demand (architecture, memory, GAAfet...)
- Sensing performance improvement (resolution, dynamics, frame rate) will have slower pull
- New sensing and computing approaches, improving "quality" vs. "quantity" of data is needed (Lidar, Thermal, SWIR,...)

AUTONOMOUS VEHICLES — SENSING AND COMPUTING

There are three innovation scenarios


embedded

The goal is to reach autonomy. Question: when, where and how?

- There are currently 2 path toward autonomy: ADAS automotive or AD robotic
- Both paths follow a newly defined "More than Moore Law": computing power requirement increases with the square of the data being processed
- The consequence is that in today's innovation scenario in automotive, we are mainly waiting for Moore's Law to act to improve current ADAS application, using "same sensor" and "same computing" approach
- The other innovation scenario currently being used is looking into new technologies for better sensing, (lidar, thermal infrared, time gating, SWIR,...) knowing the computing power available. This approach is used by the AD robotic camp and could eventually bring L2++ to automotive sooner
- Disruption in this space would be the 3rd path to innovation: New technologies are emerging which could disrupt the roadmap, new sensing approaches combined with a new computing paradigm could accelerate history — neuromorphic, quantum technologies (else?) are highly needed

