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What is SLAM?
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Simultaneous
Localization and Mapping

Recover state of a vehicle or 
sensor platform, usually over 

multiple time-steps.

Recover location of landmarks 
in some common reference 

frame.

Simultaneous: We must do these tasks at the same time, as both quantities are 
initially unknown.
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An age-old practice
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Image Source: A History of Ancient Geography among the Greeks and Romans from the Earliest Ages till the Fall of the Roman 
Empire via Wikipedia

https://archive.org/details/historyofancient00bunb/page/n720/mode/2up
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Image Source: COLMAP / Schönberger, Johannes Lutz and Frahm, Jan-Michael, “Structure From Motion Revisited”, CVPR 2016

https://demuc.de/colmap/
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SLAM at Skydio
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Visual Inertial Odometry (VIO) on the

Skydio drone, an embedded system.
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SLAM vs. Localization
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Image Source: E. Kaplan, C. Hergarty, 
Understanding GPS Principles and Applications, 
2005

Video Source: Skydio
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Formulating a SLAM Problem

For every SLAM problem, we have two key ingredients:

1) One or more sensors:

7

Source: MatrixVision

Cameras

Source: Lord MicroStrain

Inertial Measurement Unit LiDAR/Range-finders

Source: Velodyne

RGB-D/Structured Light

Source: Occipital

https://www.matrix-vision.com/USB2.0-single-board-camera-mvbluefox-mlc.html
https://www.microstrain.com/inertial/3DM-GX5-10
https://velodynelidar.com/
https://occipital.com/
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Formulating a SLAM Problem

2) A set of states we wish to recover.
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Ego-motion: Rotation, 
position, velocity

World Structure (Map)

Image Source: DroneTest

Calibration Parameters

https://blog.dronetrest.com/inertial-sensor-comparison-mpu6000-vs-mpu6050-vs-mpu6500-vs-icm20602/
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Sensor Selection

• Choice of sensor will drive many downstream design considerations.

• Consider the sensor measurement model:
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Sensor output

Ego-motion

Noise

Calibration parameters

Map
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High Level Goal

Take many measurements (possibly from many sensors), and recover the ego-motion, 

map, and calibration parameters.
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SLAM System
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Example - Calibration
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Intrinsic temperature distortion may also introduce
unexpected errors into vision estimates.

Image Source: Skydio

Tire inflation will affect the scale of wheel 
odometry, as could slippage between the tire and 

the road surface.

Image source: MotorTrend.com

Un-modelled extrinsic rotation between IMU and 
camera may cause increased drift in a visual SLAM 

pipeline. 

Image source: MWee RF Microwave

https://www.motortrend.com/news/what-is-traction-control/
https://www.mwee.com/news/intel-realsense-3d-camera-incorporates-imu
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Example - Rolling Shutter

When selecting a camera sensor for your platform, you have the choice of global or 

rolling shutter.
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Image credit: LucidVision

https://thinklucid.com/tech-briefs/understanding-digital-image-sensors/
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Example - Rolling Shutter
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Rolling shutter deforms rigid objects like the 
horizon line and the vehicle itself.

Global-shutter model:

Measured location in 
image.

Camera projection

Pose of the camera at 
time t0

Point in the world.

Rolling-shutter model:

Inclusion of higher-order derivatives in the measurement model 
increases computational cost.

Transformation of world 
points into sensor 

frame.
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What about noise?

• All sensors exhibit some minimum amount of noise.

• We distinguish between noise and model error.
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A random error that can only be 
modeled via statistical means. 

Example: thermal electrical noise.

Errors resulting from a limitation in our 
sensor model.

Example: failure to include a calibration 
parameter.
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Uncertainty

• Owing to noise in the sensor inputs, SLAM is an inherently uncertain process.

• We can never recover the “true” states, only uncertain estimates of them.

• More measurements usually means reduced uncertainty…

• … But it also means increased computational cost.

15
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The Map

Choice of sensor may also influence map parameterization.
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Collection of 
photographs?

Image Source: Noah Snavely

2D LiDAR 
scans?

Image Source: B. Bellekens et al., A 
Benchmark Survey of Rigid 3D Point Cloud 
Registration Algorithms, 2015

3D range images?

Image Source: Skydio

https://twitter.com/Jimantha/status/1117990470473351169?s=20
https://www.researchgate.net/publication/265186421_A_Survey_of_Rigid_3D_Pointcloud_Registration_Algorithms
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Design Trade-offs
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Computational cost

Sensor cost

Solution error

Where we’d like to be (impossible).
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Factor Graphs

Factor Graphs are a convenient method of graphically representing a SLAM problem.
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Nodes represent states.

Edges (factors) represent 
information about the states, in 
the form of measurements or 

priors.

Factors may be unary, 
binary, ternary, etc…

In a SLAM problem, we will 
typically have nodes for our ego-

motion, map, and calibration 
parameters.

https://www.cs.cmu.edu/~kaess/pub/Dellaert17fnt.pdf
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Factor Graphs

There is a mapping from the factor graph to our sensor measurements:

19
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Real Example: Bundle Adjustment (BA)

• A form of Structure from Motion (SFM).

• Leverage projective geometry to 

recover 3D landmarks and poses from 

2D feature associations.

• Highly scalable and can be quite 

accurate.

• Using marginalization the compute cost 

can be bounded.
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Image source: Theia SFM

For more details on SFM, see Richard Szeliski’s book as a jumping off point.

https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/236658/1/RSS2013paper.pdf
http://theia-sfm.org/
http://szeliski.org/Book/
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Structure From Motion (SFM)
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Simultaneous
Localization and Mapping

Recover state of a vehicle or 
sensor platform, usually over 

multiple time-steps.

Recover location of landmarks 
in some common reference 

frame.

Recover camera pose 
with respect to map 

points.

Triangulate map points 
using camera poses.

Bundle Adjustment is a form of optimization that does these steps 
jointly.
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Typical SLAM Pipeline w/ BA
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Compute feature 
associations

Map

Compute pose of cameraOutlier rejection
Bundle

Adjustment 
(Optimization)

Keyframes
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Keyframes store our estimates of 
the ego-motion.
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How do we get feature associations?
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Descriptor Matching

Examples: SIFT, KAZE, ORB, SuperPoint

Image Source: Georgia Tech

Feature Tracking / Flow

Examples: Optical Flow, Lucas Kanade Tracking, FlowNet

https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
https://www.doc.ic.ac.uk/~ajd/Publications/alcantarilla_etal_eccv2012.pdf
https://ieeexplore.ieee.org/document/6126544
https://arxiv.org/abs/1712.07629
http://www.apple.com
http://www.cs.toronto.edu/~fleet/research/Papers/flowChapter05.pdf
https://www.ri.cmu.edu/pub_files/pub3/baker_simon_2002_3/baker_simon_2002_3.pdf
https://arxiv.org/pdf/1504.06852.pdf
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Design Trade-offs

A “rule of thumb” principle to consider in selecting features (axes not to scale):
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Computational Cost

R
o

b
u

st
n

es
s

Lucas-
Kanade

SIFT

ORB

Deep Networks are somewhat difficult to place since 

they offer an adjustable cost-robustness trade-off.

KAZE
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Outliers in Feature Association

25
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Outliers

• Outliers: Data that does not agree with our sensor model.

• How do we deal with them?

• Let’s review a (very simple) toy problem:

26

State: alpha and beta

Measurement
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Toy Problem

27
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Toy Problem

28
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RANSAC (Random Sample Consensus)
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RANSAC
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RANSAC
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RANSAC
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RANSAC
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RANSAC
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RANSAC
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RANSAC

36

?
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RANSAC

• Pros:

• Dead simple to implement: Draw K examples, solve, count, repeat.

• Easily wrap around an existing method.

• Trivially parallelized. Have more CPU time? Sample more.

• Cons:

• Relatively weak guarantees.

• Can require a lot of iterations for high outlier fractions or models with a large K. 

• Hyper-parameters need tuning. 

37

… but, still quite useful in practice.
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RANSAC
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Typical SLAM Pipeline w/ BA
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Typical SLAM Pipeline w/ BA
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Compute feature 
associations

Map
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Typical algorithms:

• PnP

• Essential Matrix

• Homography



© 2020 Skydio

BA as a Factor Graph

41

Bundle of rays

Position, orientation

Camera calibrations

Landmarks



© 2020 Skydio

BA as a SLAM Problem

• How do we actually recover the states, given the measurements and our model?

42

?

Feature tracks form a 
‘sensor’ measurement.

Camera poses, landmark 
positions, calibration 

parameters.

Measurement model is given by the 
projective geometry of the problem.

We need to fill in this box.
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Solving the Problem

• We can use a technique called Nonlinear Least Squares to do this.

• There are many ways to formulate SLAM problems generally, and we cannot review 

them all in the time allotted.

• However, this method is widely applicable, typically fast, and is straightforward to 

implement.

• For a much more comprehensive review, I highly recommend: State Estimation for 

Robotics, Tim Barfoot, 2015 (Free online)

43

http://asrl.utias.utoronto.ca/~tdb/bib/barfoot_ser17.pdf


© 2020 Skydio

Assumptions

• We will convert our measurement models into a system of equations.

• Prior to that, we will make an additional assumption - that the measurement noise is 

drawn from a zero-mean gaussian.

44

• We will also assume we have an initial guess for our states. In a time recursive system, 

this could come from the previous frame.
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Nonlinear Least Squares

We re-write our measurements as a residual functions:

45

The i’th camera pose, observing the j’th landmark.

And concatenate these into a large vector:

We take the squared Mahalanobis norm,
weighting by our assumed measurement 
uncertainty.

https://en.wikipedia.org/wiki/Mahalanobis_distance
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Nonlinear Least Squares

Our ‘best estimate’ will occur when the objective function is minimized:

46

Because f is usually going to be non-linear for most SLAM problems,

we end up linearizing the problem and taking a series of steps.

Jacobian J is the linearization of f about 
our initial guess.
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Nonlinear Least Squares

The solution at each iteration:

47

When linearized about the converged solution, the inverted Hessian doubles as a first order 

approximation of the marginal covariance of our estimate: * 

* See Barfoot, Chapters 3 and 4.

First order approximation of the Hessian. Inversion 
has complexity O(|y|3)

Each residual is weighted by its inverse uncertainty.

http://asrl.utias.utoronto.ca/~tdb/bib/barfoot_ser17.pdf
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Sparsity

48

Binary
Factor
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Nonlinear Least Squares

• In the linearized form, the problem is ‘easy’ to solve.

• Reduces to iterated application of weighted least squares.

• Generally, cost of solving for updates is cubic in the number of states:

• However, in some problems (like BA) there is sparsity we can leverage to improve 

this.

• Huge number of problems can be cast this way (given an initial guess).

• Can run in a fixed memory footprint → suitable for embedded use case.

• With the appropriate Σ weights we can show the NLS produces an approximate estimate 

of the uncertainty in our solution.

49
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Caveats

• Remember our assumptions:

• We needed an initial guess to linearize the system. If the guess is poor, the gradient 

used in the optimizer will steer our solution in the wrong direction.

• Additionally, the covariance estimate we get out is only as good as the linearization 

point.

• We also assumed Gaussian noise on the measurements.

• Outliers must be removed, or they will dominate the optimization.

50
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Linearization

• It is worth considering the effect of linearization on our uncertainty estimate.

• For a Gaussian variable u and non-linear vector function g, we can approximate:

51

Because we linearized, the fidelity of our first-order Σ 
relies on this approximation.

See Barfoot, Chapter 2.

http://asrl.utias.utoronto.ca/~tdb/bib/barfoot_ser17.pdf
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Tools

• Some relevant tools:

• GTSAM, open source package created by Frank Dellaert et al.

• Allows specification of problem in factor graph format, built for SLAM.

• G2O

• Includes solutions for SLAM and BA.

• Ceres Solver, produced by Google

• General non-linear least-squares optimizer.

• Python

• scipy.optimize.least_squares

52

https://gtsam.org/
https://www.cc.gatech.edu/~dellaert/FrankDellaert/Frank_Dellaert/Frank_Dellaert.html
https://github.com/RainerKuemmerle/g2o
http://ceres-solver.org/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html
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BA on Real-Time Systems

• BA can operate at small and large scale.

• Small: A few image frames on a mobile phone.

• Large: Tens of thousand of images at city-scale.

• Fairly straightforward to implement.

• But:

• Robust association may require expensive descriptors.

• After feature association, we must devote nontrivial compute to outlier rejection.

• Update rate limited to camera frame rate (slow).

53
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VIO as a Factor Graph: BA + IMU
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Bundle of rays

Position, orientation, velocity

Biases/IMU calibration parameters

Camera calibrations

Landmarks

IMU, motion model

Source: MatrixVision

Cameras

Source: Lord MicroStrain

Inertial Measurement Unit

https://www.matrix-vision.com/USB2.0-single-board-camera-mvbluefox-mlc.html
https://www.microstrain.com/inertial/3DM-GX5-10


© 2020 Skydio

VIO

• One of the most successful adaptations of vision research to the market.

• Present in smart phones, AR/VR headsets, drones, autonomous vehicles. 

• Camera and IMU are highly complementary:

• Camera: 

• Low update rate, high compute cost, subject to outlier data.

• Able to relocalize accurately at large distances.

• IMU:

• High update rate, low compute cost, few outliers (maybe saturation).

• Accurate over short intervals, but drifts over time.

• Able to recover attitude with respect to global reference frame (gravity).

55
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VIO
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IMU can deliver substantial value here. 
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BA/VIO Implementations

• Existing open-source implementations (not exhaustive):

• OpenMVG

• COLMAP Offline SFM and Multi-view Stereo (MVS)

• CMVS Multi-view Stereo

• ORB-SLAM2 Real-time SLAM featuring BA optimization

• PTAM One of the earliest functional visual-SLAM demos

• VINS-Mono VIO, runs on a mobile device

• Basalt VIO

• ROVIO VIO, example of a direct method

57

https://github.com/openMVG/openMVG
https://colmap.github.io/
https://www.di.ens.fr/cmvs/
https://github.com/raulmur/ORB_SLAM2
http://www.robots.ox.ac.uk/~gk/PTAM/
https://github.com/HKUST-Aerial-Robotics/VINS-Mono
https://github.com/VladyslavUsenko/basalt-mirror
https://github.com/ethz-asl/rovio


© 2020 Skydio

Fin

• Additional Reading:

• State Estimation for Robotics (Barfoot, 2015)

• Factor Graphs for Robot Perception (Dellaert and Kaess, 2017)

• Visual Odometry, (Scaramuzza and Fraundorfer, 2011)

• Probabilistic Robotics, (Thrun, Burgard, and Fox, 2005)

• GTSAM Software Library

Questions? Feel free to reach out: gareth@skydio.com
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http://asrl.utias.utoronto.ca/~tdb/bib/barfoot_ser17.pdf
https://www.cs.cmu.edu/~kaess/pub/Dellaert17fnt.pdf
http://www.eng.auburn.edu/~troppel/courses/7970%202015A%20AdvMobRob%20sp15/literature/vis%20odom%20tutor%20part1%20.pdf
http://www.probabilistic-robotics.org/
https://gtsam.org/
mailto:gareth@skydio.com

