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Convolutional Neural Networks

• CNNs are most popular for vision tasks like image classification and segmentation.

• CNNs are computationally intensive. 

• Computation and data movement requires energy.

• Data read and write major energy consumer.

• Activations, partial sums and weights constitute the most amount of data moved.
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2D Convolution Operation

• Weights multiplied by input feature 

map and accumulated.

• Kernel or weights are synonymous.

• Filters in CNNs convolve over 

multiple channels.

Image Source: https://cedar.buffalo.edu/~srihari/CSE574/Chap5/Chap5.5.6-ConvolutionalNetworks.pdf
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Challenges in FPGA Implementation of DNNs
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1 Challenge 1 : Huge Memory Transfer (Input and Output)

2 Challenge 2 : Large Onchip Buffers (Input and Output)

3 Challenge 3: Large  Compute

4 Challenge 4: Complicated Scheduling and Dataflow Control
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Method #1
FIFO Based
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Convolution – Tile Based

• Conv. with 3x3 kernel

• Need to read at least 3

rows of pixels into line buffers.

• Better tile based

processing with 4 line 

buffers.
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Proposed Dataflow

• Method proposed for VGG16 which has only 3x3 kernel

• Can be extended to other kernel sizes as well

• The proposed method aims to reduce the read and write bandwidth.

• Aims to read the input feature map only once.

[4]. A. Ardakani, C. Condo, M. Ahmadi, and W. J. Gross, “An architecture to accelerate convolution in deep neural networks,” 

IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 4, pp. 1349–1362, 2017.
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The Basic Idea and an Example
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Processing Element (PE) 

• Uses 3 FIFOs to compute convolution output

• Partial sums are stored in 2 FIFOs.

• 3rd FIFO used to accumulate outputs

• Partial sum FIFO size = width of the input image.

• Rounded up to 256 in case of VGG16

• 2 such FIFOs

• Output FIFO used to combine output of Processing elements

• Output FIFO size for VGG16 =>256x256 = 64k
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Processing Element (PE) Architecture 
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Parallel Implementation

• Example of how 64 channel Input Feature (IF) map is processed in groups of 4.
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Hardware Platform

• XILINX PYNQZ1 has  a ZNYQ 

7000 soc.

• Has an ARM processor 

running at 650 MHz.

• Programable logic works at 

100 MHz.

• Programmable logic can be 

controlled using Python code
Image source : https://reference.digilentinc.com/_media/reference/programmable-logic/pynq-z1/pynq-z1-1.png
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Architecture Implementation

• The architecture was implemented using C++

• HLS used to convert C++ to hardware.

• RTL IP created and built into block design

• Xilinx Vivado used to synthesize, place and route the block design

• Fixed point 16 format was used for the weights and partial sums.

• Python code using PYNQ library used to implement the Conv. Layer operation.
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FPGA Utilization

Includes the space required for 

AXI DMAs, Block RAMs other 

blocks.
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Results and Comparisons

[10]  Y. Chen, T. Krishna, J.S. Emer and V. Sze, “Eyeriss:  An energy-efficient reconfigurable accelerator for deep 

convolutional neural networks” IEEE Journal of Solid State Circuits, vol. 52, no. 1, pp. 127-138, January 2017.

[4]. A. Ardakani, C. Condo, M. Ahmadi, and W. J. Gross, “An architecture to accelerate convolution in deep neural networks,” 

IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 4, pp. 1349–1362, 2017.
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Method #2
Single Partial Product 2-D 

(SPP2D)
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Convolution Operation
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i1*w0 i2*w1 i3*w2

i6*w3 i7*w4 i8*w5
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i2*w0 i3*w1 i4*w2

i7*w3 i8*w4 i9*w5

i12*w6 i13*w7 i14*w8

i5*w0 i6*w1 i7*w2

i10*w3 i11*w4 i12*w5

i15*w6 i16*w7 i17*w8

i6*w0 i7*w1 i8*w2

i11*w3 i12*w4 i13*w5

i16*w6 i17*w7 i18*w8

i7*w0 i8*w1 i9*w2

i12*w3 i13*w4 i14*w5

i17*w6 i18*w7 i19*w8

i10*w0 i11*w1 i12*w2

i15*w3 i16*w4 i17*w5

i20*w6 i21*w7 i22*w8

i11*w0 i12*w1 i13*w2

i16*w3 i17*w4 i18*w5
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Σi12*w0 i13*w1 i14*w2

i17*w3 i18*w4 i19*w5

i22*w6 i23*w7 i24*w8

Consider and input of size 5x5,kernel of size 3x3.We consider a convolution operation 
with stride 1 and with zero padding. 
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Frequency of use of an input pixels is N(x) where x is the frequency itself. For example i0 has frequency 1 
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Convolution Operation

We use the notation N(x) to convey the frequency of use for an input pixel, here x is the frequency. 

For example, pixel i12 has frequency N(9). It is the input pixel that is used 9 times with all 9 kernel 
elements.
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Pattern of Input Pixel Frequency in Sliding Window

Pattern of the frequency with which input pixels are needed in the existing* implementation

N(9) pixels always lies in the center of the input ( (N-4)x(N-4) where N is input dimension) while all the 
other frequencies lie on the periphery boundary which is two pixels deep. 
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Patterns in Existing Implementation

Pattern of the frequency with which input pixels are needed in the existing* implementation

N(3) pixels always lies in the center of the input while all the other frequencies lie on top and bottom 
and are two pixels deep

A. Ardakani, C. Condo, M. Ahmadi, and W. J. Gross, “An architecture to accelerate convolution in deep neural networks,” 

IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 4, pp. 1349–1362, 2017.
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Generalized Equation for Pattern of Input Pixels for Sliding 
Window Operation

N(9)

N(6)

N(3)

N(4)

N(2)

N(1)

N pixels

N pixels

2 columns 2 columns

2 rows

2 rows

input size N(9) N(6) and N(3) N(4) and N(1) N(2)

5 1 4 4 8

6 4 8 4 8

7 9 12 4 8

10 36 24 4 8

14 100 40 4 8

28 576 96 4 8

56 2704 208 4 8

112 11664 432 4 8

224 48400 880 4 8

Number of inputs with N(x) Generalized Expression

N(9) (Hinput – 2) x (Winput – 2)

N(6) and N(3) ((Hinput – 4) x 2 ) +   ((Winput – 4)x2)

N(4) and N(1) 4

N(2) 2x4

Hinput and Winput  are dimension of  input and are N 
pixels in this example 
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SPP2D – Input stream 

• Only i12 occupies all the multipliers with the 9 weight 

• Complementary Sets : (i7,i22), (i17,i2), (i11,i 14), (i6,i19,i21,i24), (i16,i1,i19,i4), 
(i13, i10), (i8,i5,i23,i20), (i18,i3,i15,i0)
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SPP2D – Optimized Input stream 

Two benefits of combining input pixels into complementary 
sets

1. All multipliers are occupied

2. Arrive at output faster. Theoretically in 9 cycles for this 
arrangement

i0 i1 i2 i3 i4

i5 i6 i7 i8 i9

i10 i11 i12 i13 i14

i15 i16 i17 i18 i19

i20 i21 i22 i23 i24

o0 o1 o2

o3 o4 o5

o6 o7 o8

w0 w1 w2

w3 w4 w5

w6 w7 w8

Kernel
Output

Input

clock cycles 1 2 3 4 5 6 7 8 9

N(x) N(4),N(2),N(1) N(4),N(2),N(1) N(6),N(3) N(4),N(2),N(1) N(4),N(2),N(1) N(6),N(3) N(6),N(3) N(6),N(3) N(9)

weights
Complementary 

sets
i18+i3+i15+i0 i16+i1+i19+i4 i17 +i2 i8+i5 +i23+i20 i6+i19+i21+i24 i7 +i22 i13 + i10 i11 +i14 i12

w0 w0i0 w0i1 w0i2 w0i5 w0i6 w0i7 w0i10 w0i11 w0i12

w1 w1i3 w1i1 w1i2 w1i8 w1i6 w1i7 w1i13 w1i11 w1i12

w2 w2i3 w2i4 w2i2 w2i8 w2i9 w2i7 w2i13 w2i14 w2i12

w3 w3i15 w3i16 w3i17 w3i5 w3i6 w3i7 w3i10 w3ii11 w3i12

w4 w4i18 w4i16 w4i17 w4i8 w4i6 w4i7 w4i13 w4i11 w4i12

w5 w5i18 w5i19 w5i17 w5i8 w5i9 w5i7 w5i13 w5i14 w5i12

w6 w6i15 w6i16 w6i17 w6i20 w6i21 w6i22 w6i10 w6i11 w6i12

w7 w7i18 w7i16 w7i17 w7i23 w7i21 w7i22 w7i13 w7i11 w7i12

w8 w8i18 w8i19 w8i17 w8i23 w8i24 w8i22 w8i13 w8i14 w8i12

25



© 2020 SPRL, SoE, Santa Clara University

w0 

2

w1 

2

w2 

3

w3 

1

w4 

2

w5 

1

w6 

1

w7

3

w8 

1

SPP2D – Partial Products Sorted into their Outputs

The highlighted partial 
products in red 
contribute to the first 
output pixel

Output
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i18+i3+i15+i0 6 4 4 2 3 3 2 3 3

i16+i1+i19+i4 5 5 6 1 1 3 1 1 3

i17 +i2 7 7 7 8 8 8 8 8 8

i8+i5 +i23+i20 8 1 1 8 1 1 9 2 2

i6+i19+i21+i24 2 2 5 2 2 5 9 9 4

i7 +i22 8 8 8 8 8 8 10 10 10

i13 + i10 5 9 9 5 9 9 5 9 9

i11 +i 14 2 2 8 2 2 8 2 2 8

i12 3 3 3 3 3 3 3 3 3

Σ 12 10 21 8 4 8 5 6 3
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SPP2D – Hardware Architecture

External 

Memory

Weight

Buffer

Input Buffer

Selector

Accumulator
Output 

Buffer

9 weights

Multiplier

Input Stream

27



© 2020 SPRL, SoE, Santa Clara University

SPP2D – Hardware Architecture

• Delivers output in 9 cycles for an 
input of 5x5 and kernel of size 3x3. 

• Architecture involves blowing up an 
input matrix of 25 pixels to 81 pixels.

• The selector accumulator for this 
example is designed for a 5x5 input 
and 3x3 weights. Need to scale it to 
an input size of 224x224 for VGG16 
example.

28
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Results and Comparisons 

Our Algorithm is 9x faster than the sliding window and 3x faster than the Warren Gross 
Implementation

[1]  A. Ardakani, C. Condo, M. Ahmadi, and W. J. Gross, “An architecture to accelerate convolution in deep neural networks,” 

IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 4, pp. 1349–1362, 2017.
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Future Work
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Future work (1)

• Use Compression: CNNs can be compressed to INT8 with minimal impact on accuracy.

• More Processing Elements (PEs) can be implemented. 

• Faster operation

• Compress weights and activations to reduce bandwidth requirement.

• The utilization percentage of Method #1 FIFOs for the later layers of the CNNs is low

31



© 2020 SPRL, SoE, Santa Clara University

Future work (2)

• Better utilization of FIFOs for later layers of CNNs of Method #1.

• Better utilization of Multipliers for layers of CNNs of Method #2.

• These two methods can be utilized for other non-FPGA platforms e.g. ASICs, CPUs, 

GPUs, etc.

• Demonstrate scalability to practical sizes such as 224x224.
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Summary and Conclusions
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Summary and Conclusions

• We presented two new methods for 2-D convolution that offer considerable reduction 
in power, computational complexity and efficiency offering a considerably better 
architecture.

• The first method is based on using FIFOs and computes convolution results using row-
wise inputs as opposed to traditional tile-based processing giving considerably 
reduced latency. 

• The second method Single Partial Product 2-D (SPP2D) Convolution prevents 
recalculation of partial weights and reduces input reuse.

• Hardware implementation results with improvements are presented.
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Questions & Answers
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