
© 2020 SPRL, SoE, Santa Clara University

New Methods for Implementation of 2-D
Convolution for Convolutional Neural
Network (CNN)

Tokunbo Ogunfunmi

Signal Processing Research Lab (SPRL),

Electrical & Computer Engr. (ECEN) Dept.,

School of Engineering,

Santa Clara University.

September 2020

© 2020 SPRL, SoE, Santa Clara University

Outline

➢ Motivation

➢ Challenges in Implementing 2-D Convolution for CNNs

➢ Method #1

➢ Method #2

➢ Future Work

➢ Summary and Conclusions

2

© 2020 SPRL, SoE, Santa Clara University

Convolutional Neural Networks

• CNNs are most popular for vision tasks like image classification and segmentation.

• CNNs are computationally intensive.

• Computation and data movement requires energy.

• Data read and write major energy consumer.

• Activations, partial sums and weights constitute the most amount of data moved.

3

© 2020 SPRL, SoE, Santa Clara University

2D Convolution Operation

• Weights multiplied by input feature

map and accumulated.

• Kernel or weights are synonymous.

• Filters in CNNs convolve over

multiple channels.

Image Source: https://cedar.buffalo.edu/~srihari/CSE574/Chap5/Chap5.5.6-ConvolutionalNetworks.pdf

4

© 2020 SPRL, SoE, Santa Clara University

Challenges in FPGA Implementation of DNNs

Computation Engine

PE PE PE PE

On chip

Output

buffer

External

Memory

FPGA

Input image

And weights

Input pixels

and weights

Input pixels

and weights

Output

Feature

Map

Pixel

Input size
Loop Tiling Loop Unrolling

Output feature size
Loop Tiling

On chip

buffer for

input and

weights

2 3 2

External

Memory
1

1 Challenge 1 : Huge Memory Transfer (Input and Output)

2 Challenge 2 : Large Onchip Buffers (Input and Output)

3 Challenge 3: Large Compute

4 Challenge 4: Complicated Scheduling and Dataflow Control

4

1

5

© 2020 SPRL, SoE, Santa Clara University

Method #1
FIFO Based

© 2020 SPRL, SoE, Santa Clara University

Convolution – Tile Based

• Conv. with 3x3 kernel

• Need to read at least 3

rows of pixels into line buffers.

• Better tile based

processing with 4 line

buffers.

7

© 2020 SPRL, SoE, Santa Clara University

Proposed Dataflow

• Method proposed for VGG16 which has only 3x3 kernel

• Can be extended to other kernel sizes as well

• The proposed method aims to reduce the read and write bandwidth.

• Aims to read the input feature map only once.

[4]. A. Ardakani, C. Condo, M. Ahmadi, and W. J. Gross, “An architecture to accelerate convolution in deep neural networks,”

IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 4, pp. 1349–1362, 2017.

8

© 2020 SPRL, SoE, Santa Clara University

The Basic Idea and an Example

Partial sum

FIFO1

Output

FIFO

Partial sum

FIFO2

33

14

4

16

7

23

1

21

0

12

7

14

5

14

9

19

5

20

4

87
11

2

10

0
75 85

67 95 75 65 82

90
11

5

14

3

23

2

17

8

1 0 -1 2 0 -2 1 0 -1

-23

-53

-43

-22

-44

-67

-50

-

100

-

153

-55

-

110

-

153

-13

-26

-48

-13

-80

9

© 2020 SPRL, SoE, Santa Clara University

Processing Element (PE)

• Uses 3 FIFOs to compute convolution output

• Partial sums are stored in 2 FIFOs.

• 3rd FIFO used to accumulate outputs

• Partial sum FIFO size = width of the input image.

• Rounded up to 256 in case of VGG16

• 2 such FIFOs

• Output FIFO used to combine output of Processing elements

• Output FIFO size for VGG16 =>256x256 = 64k

10

© 2020 SPRL, SoE, Santa Clara University

Processing Element (PE) Architecture

11

© 2020 SPRL, SoE, Santa Clara University

Parallel Implementation

• Example of how 64 channel Input Feature (IF) map is processed in groups of 4.

12

© 2020 SPRL, SoE, Santa Clara University

Hardware Platform

• XILINX PYNQZ1 has a ZNYQ

7000 soc.

• Has an ARM processor

running at 650 MHz.

• Programable logic works at

100 MHz.

• Programmable logic can be

controlled using Python code
Image source : https://reference.digilentinc.com/_media/reference/programmable-logic/pynq-z1/pynq-z1-1.png

© 2020 SPRL, SoE, Santa Clara University

Architecture Implementation

• The architecture was implemented using C++

• HLS used to convert C++ to hardware.

• RTL IP created and built into block design

• Xilinx Vivado used to synthesize, place and route the block design

• Fixed point 16 format was used for the weights and partial sums.

• Python code using PYNQ library used to implement the Conv. Layer operation.

14

© 2020 SPRL, SoE, Santa Clara University

FPGA Utilization

Includes the space required for

AXI DMAs, Block RAMs other

blocks.

15

© 2020 SPRL, SoE, Santa Clara University

Results and Comparisons

[10] Y. Chen, T. Krishna, J.S. Emer and V. Sze, “Eyeriss: An energy-efficient reconfigurable accelerator for deep

convolutional neural networks” IEEE Journal of Solid State Circuits, vol. 52, no. 1, pp. 127-138, January 2017.

[4]. A. Ardakani, C. Condo, M. Ahmadi, and W. J. Gross, “An architecture to accelerate convolution in deep neural networks,”

IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 4, pp. 1349–1362, 2017.

16

© 2020 SPRL, SoE, Santa Clara University

Method #2
Single Partial Product 2-D

(SPP2D)

© 2020 SPRL, SoE, Santa Clara University

Convolution Operation

i0 i1 i2 i3 i4

i5 i6 i7 i8 i9

i10 i11 i12 i13 i14

i15 i16 i17 i18 i19

i20 i21 i22 i23 i24

i0*w0 i1*w1 i2*w2

i5*w3 i6*w4 i7*w5

i10*w6 i11*w7 i12*w8

Input

o0 o1 o2

o3 o4 o5

o6 o7 o8

w0 w1 w2

w3 w4 w5

w6 w7 w8

Kernel Output

i1*w0 i2*w1 i3*w2

i6*w3 i7*w4 i8*w5

i11*w6 i12*w7 i13*w8

i2*w0 i3*w1 i4*w2

i7*w3 i8*w4 i9*w5

i12*w6 i13*w7 i14*w8

i5*w0 i6*w1 i7*w2

i10*w3 i11*w4 i12*w5

i15*w6 i16*w7 i17*w8

i6*w0 i7*w1 i8*w2

i11*w3 i12*w4 i13*w5

i16*w6 i17*w7 i18*w8

i7*w0 i8*w1 i9*w2

i12*w3 i13*w4 i14*w5

i17*w6 i18*w7 i19*w8

i10*w0 i11*w1 i12*w2

i15*w3 i16*w4 i17*w5

i20*w6 i21*w7 i22*w8

i11*w0 i12*w1 i13*w2

i16*w3 i17*w4 i18*w5

i21*w6 i22*w7 i23*w8

Σi12*w0 i13*w1 i14*w2

i17*w3 i18*w4 i19*w5

i22*w6 i23*w7 i24*w8

Consider and input of size 5x5,kernel of size 3x3.We consider a convolution operation
with stride 1 and with zero padding.

18

© 2020 SPRL, SoE, Santa Clara University

o0 o1 o2

o3 o4 o5

o6 o7 o8

o0 o1 o2

o3 o4 o5

o6 o7 o8

o0 o1 o2

o3 o4 o5

o6 o7 o8

Convolution Operation

i0 i1 i2 i3 i4

i5 i6 i7 i8 i9

i10 i11 i12 i13 i14

i15 i16 i17 i18 i19

i20 i21 i22 i23 i24

i0 i1 i2 i3 i4

i5 i6 i7 i8 i9

i10 i11 i12 i13 i14

i15 i16 i17 i18 i19

i20 i21 i22 i23 i24

i0 i1 i2 i3 i4

i5 i6 i7 i8 i9

i10 i11 i12 i13 i14

i15 i16 i17 i18 i19

i20 i21 i22 i23 i24

Frequency of use of an input pixels is N(x) where x is the frequency itself. For example i0 has frequency 1

19

© 2020 SPRL, SoE, Santa Clara University

Convolution Operation

We use the notation N(x) to convey the frequency of use for an input pixel, here x is the frequency.

For example, pixel i12 has frequency N(9). It is the input pixel that is used 9 times with all 9 kernel
elements.

20

© 2020 SPRL, SoE, Santa Clara University

Pattern of Input Pixel Frequency in Sliding Window

Pattern of the frequency with which input pixels are needed in the existing* implementation

N(9) pixels always lies in the center of the input ((N-4)x(N-4) where N is input dimension) while all the
other frequencies lie on the periphery boundary which is two pixels deep.

21

© 2020 SPRL, SoE, Santa Clara University

Patterns in Existing Implementation

Pattern of the frequency with which input pixels are needed in the existing* implementation

N(3) pixels always lies in the center of the input while all the other frequencies lie on top and bottom
and are two pixels deep

A. Ardakani, C. Condo, M. Ahmadi, and W. J. Gross, “An architecture to accelerate convolution in deep neural networks,”

IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 4, pp. 1349–1362, 2017.

22

© 2020 SPRL, SoE, Santa Clara University

Generalized Equation for Pattern of Input Pixels for Sliding
Window Operation

N(9)

N(6)

N(3)

N(4)

N(2)

N(1)

N pixels

N pixels

2 columns 2 columns

2 rows

2 rows

input size N(9) N(6) and N(3) N(4) and N(1) N(2)

5 1 4 4 8

6 4 8 4 8

7 9 12 4 8

10 36 24 4 8

14 100 40 4 8

28 576 96 4 8

56 2704 208 4 8

112 11664 432 4 8

224 48400 880 4 8

Number of inputs with N(x) Generalized Expression

N(9) (Hinput – 2) x (Winput – 2)

N(6) and N(3) ((Hinput – 4) x 2) + ((Winput – 4)x2)

N(4) and N(1) 4

N(2) 2x4

Hinput and Winput are dimension of input and are N
pixels in this example

23

© 2020 SPRL, SoE, Santa Clara University

SPP2D – Input stream

• Only i12 occupies all the multipliers with the 9 weight

• Complementary Sets : (i7,i22), (i17,i2), (i11,i 14), (i6,i19,i21,i24), (i16,i1,i19,i4),
(i13, i10), (i8,i5,i23,i20), (i18,i3,i15,i0)

24

© 2020 SPRL, SoE, Santa Clara University

SPP2D – Optimized Input stream

Two benefits of combining input pixels into complementary
sets

1. All multipliers are occupied

2. Arrive at output faster. Theoretically in 9 cycles for this
arrangement

i0 i1 i2 i3 i4

i5 i6 i7 i8 i9

i10 i11 i12 i13 i14

i15 i16 i17 i18 i19

i20 i21 i22 i23 i24

o0 o1 o2

o3 o4 o5

o6 o7 o8

w0 w1 w2

w3 w4 w5

w6 w7 w8

Kernel
Output

Input

clock cycles 1 2 3 4 5 6 7 8 9

N(x) N(4),N(2),N(1) N(4),N(2),N(1) N(6),N(3) N(4),N(2),N(1) N(4),N(2),N(1) N(6),N(3) N(6),N(3) N(6),N(3) N(9)

weights
Complementary

sets
i18+i3+i15+i0 i16+i1+i19+i4 i17 +i2 i8+i5 +i23+i20 i6+i19+i21+i24 i7 +i22 i13 + i10 i11 +i14 i12

w0 w0i0 w0i1 w0i2 w0i5 w0i6 w0i7 w0i10 w0i11 w0i12

w1 w1i3 w1i1 w1i2 w1i8 w1i6 w1i7 w1i13 w1i11 w1i12

w2 w2i3 w2i4 w2i2 w2i8 w2i9 w2i7 w2i13 w2i14 w2i12

w3 w3i15 w3i16 w3i17 w3i5 w3i6 w3i7 w3i10 w3ii11 w3i12

w4 w4i18 w4i16 w4i17 w4i8 w4i6 w4i7 w4i13 w4i11 w4i12

w5 w5i18 w5i19 w5i17 w5i8 w5i9 w5i7 w5i13 w5i14 w5i12

w6 w6i15 w6i16 w6i17 w6i20 w6i21 w6i22 w6i10 w6i11 w6i12

w7 w7i18 w7i16 w7i17 w7i23 w7i21 w7i22 w7i13 w7i11 w7i12

w8 w8i18 w8i19 w8i17 w8i23 w8i24 w8i22 w8i13 w8i14 w8i12

25

© 2020 SPRL, SoE, Santa Clara University

w0

2

w1

2

w2

3

w3

1

w4

2

w5

1

w6

1

w7

3

w8

1

SPP2D – Partial Products Sorted into their Outputs

The highlighted partial
products in red
contribute to the first
output pixel

Output

o0

77
o1

75

o2

93

o3

69

o4

68
o5

82

o6

81

o7

98

o8

85

i18+i3+i15+i0 6 4 4 2 3 3 2 3 3

i16+i1+i19+i4 5 5 6 1 1 3 1 1 3

i17 +i2 7 7 7 8 8 8 8 8 8

i8+i5 +i23+i20 8 1 1 8 1 1 9 2 2

i6+i19+i21+i24 2 2 5 2 2 5 9 9 4

i7 +i22 8 8 8 8 8 8 10 10 10

i13 + i10 5 9 9 5 9 9 5 9 9

i11 +i 14 2 2 8 2 2 8 2 2 8

i12 3 3 3 3 3 3 3 3 3

Σ 12 10 21 8 4 8 5 6 3

26

© 2020 SPRL, SoE, Santa Clara University

SPP2D – Hardware Architecture

External

Memory

Weight

Buffer

Input Buffer

Selector

Accumulator
Output

Buffer

9 weights

Multiplier

Input Stream

27

© 2020 SPRL, SoE, Santa Clara University

SPP2D – Hardware Architecture

• Delivers output in 9 cycles for an
input of 5x5 and kernel of size 3x3.

• Architecture involves blowing up an
input matrix of 25 pixels to 81 pixels.

• The selector accumulator for this
example is designed for a 5x5 input
and 3x3 weights. Need to scale it to
an input size of 224x224 for VGG16
example.

28

5x5 input
results
25 pixels

Would require a
big buffer to
accommodate
81 pixels

The mux selector
accumulator
needs to scale to
an input of size
224x224

© 2020 SPRL, SoE, Santa Clara University

Results and Comparisons

Our Algorithm is 9x faster than the sliding window and 3x faster than the Warren Gross
Implementation

[1] A. Ardakani, C. Condo, M. Ahmadi, and W. J. Gross, “An architecture to accelerate convolution in deep neural networks,”

IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 4, pp. 1349–1362, 2017.

29

© 2020 SPRL, SoE, Santa Clara University

Future Work

© 2020 SPRL, SoE, Santa Clara University

Future work (1)

• Use Compression: CNNs can be compressed to INT8 with minimal impact on accuracy.

• More Processing Elements (PEs) can be implemented.

• Faster operation

• Compress weights and activations to reduce bandwidth requirement.

• The utilization percentage of Method #1 FIFOs for the later layers of the CNNs is low

31

© 2020 SPRL, SoE, Santa Clara University

Future work (2)

• Better utilization of FIFOs for later layers of CNNs of Method #1.

• Better utilization of Multipliers for layers of CNNs of Method #2.

• These two methods can be utilized for other non-FPGA platforms e.g. ASICs, CPUs,

GPUs, etc.

• Demonstrate scalability to practical sizes such as 224x224.

32

© 2020 SPRL, SoE, Santa Clara University

Summary and Conclusions

© 2020 SPRL, SoE, Santa Clara University

Summary and Conclusions

• We presented two new methods for 2-D convolution that offer considerable reduction
in power, computational complexity and efficiency offering a considerably better
architecture.

• The first method is based on using FIFOs and computes convolution results using row-
wise inputs as opposed to traditional tile-based processing giving considerably
reduced latency.

• The second method Single Partial Product 2-D (SPP2D) Convolution prevents
recalculation of partial weights and reduces input reuse.

• Hardware implementation results with improvements are presented.

34

© 2020 SPRL, SoE, Santa Clara University

References & Acknowledgements

35

Reference 1

A FIFO Based Accelerator for CNNs

Reference 2

A Fast 2-D Convolution Technique for

Deep Neural Networks

Acknowledgements

Xilinx University Program

Vineet Panchbaiyye, Santa Clara
University

Anaam Ansari, Santa Clara University

https://ieeexplore.ieee.org/document/9053228
https://www.iscas2020.org/

© 2020 SPRL, SoE, Santa Clara University

Questions & Answers

36

Contact Information:

Tokunbo Ogunfunmi

Santa Clara University

Email: Togunfunmi@scu.edu

mailto:Togunfunmi@scu.edu

