embedded VISIMN Summit

An Introduction to Machine Learning: How to Teach Machines to See

Facundo Parodi Tryolabs September 2020

⊗tryo.labs

Who are we?

& tryo-labs

Outline

Machine Learning

- Types of Machine Learning Problems
- ► Steps to solve a Machine Learning Problem

Deep learning

Artificial Neural Networks

Image Classification

Convolutional Neural Networks

What is a cat?

What is a cat?

The subfield of computer science that "gives computers the ability to learn without being explicitly programmed". (Arthur Samuel, 1959)

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E." (Tom Mitchell, 1997)

Introduction to Machine Learning The Big Data era

Accessibility

Data already available everywhere

Low storage costs: everyone has several GBs for "free"

Hardware more **powerful** and **cheaper** than ever before

Devices

Everyone has a powerful computer packed with sensors:

► GPS

- ► Cameras
- ► Microphones

Permanently connected to the Internet

Services

Cloud Computing:

- ► Online storage
- Infrastructure as a Service

User applications:

- ► YouTube
- ► Gmail
- ► Facebook
- ► Twitter

embedded VISION summit

Supervised

Unsupervised

Reinforcement

Learn through **examples** of which we know the desired output (what we want to predict).

Is this a cat or a dog?

Are these emails spam or not?

Predict the market value of houses, given the square meters, number of rooms, neighborhood, etc.

Reinforcement

Supervised

Unsupervised

embedded VISION SUMMIT

Supervised

Unsupervised

Reinforcement

There is **no** *desired* **output**. Learn something about the data. *Latent* relationships.

I have photos and want to put them in 20 groups.

I want to find anomalies in the credit card usage patterns of my customers.

Supervised

Useful for learning structure in the data **(clustering)**, hidden correlations, reduce dimensionality, etc.

Unsupervised

Reinforcement

> tryo.labs

Supervised

Unsupervised

An agent **interacts** with an **environment** and watches the result of the interaction.

Environment gives feedback via a positive or negative **reward signal**.

Reinforcement

Introduction to Machine Learning Steps to solve a Machine Learning problem

Data	Data	Feature	Algorithm Selection	Making
Gathering	Preprocessing	Engineering	& Training	Predictions
Collect data from various sources	Clean data to have homogeneity	Making your data more useful	Selecting the right machine learning model	Evaluate the model

Might depend on human work

- Manual labeling for supervised learning.
- Domain knowledge. Maybe even experts.

May come for free, or "sort of"

► E.g., Machine Translation.

The more the better: Some algorithms need large amounts of data to be useful (e.g., neural networks).

The quantity and quality of data dictate the model accuracy

Introduction to Machine Learning Data processing

Is there anything **wrong** with the data?

- Missing values
- ► Outliers
- Bad encoding (for text)
- Wrongly-labeled examples
- Biased data

Do I have many more samples from one class than the rest?

Need to fix/remove data?

Introduction to Machine Learning Feature engineering

Our inputs are represented by a set of features.

A feature is an individual measurable property of a phenomenon being observed

To classify spam email, features could be:

- ▶ Number of words that have been *ch4ng3d* like this.
- ► Language of the email (0=English, 1=Spanish)
- ► Number of emojis

Extracts more information from existing data, doesn't add "new" data

- ► Making it more **useful**
- ► With good features, most algorithms can learn **faster**
- It can be an art
 - Requires thought and knowledge of the data

Two steps:

- Variable transformation (e.g., dates into weekdays, normalizing)
- ► Feature creation (e.g., n-grams for texts, if word is capitalized to detect names)

Introduction to Machine Learning Algorithm selection & Training

Supervised

- ► Linear classifier
- ► Naive Bayes
- Support Vector Machines (SVM)
- Decision Tree
- Random Forests
- k-Nearest Neighbors
- Neural Networks (Deep learning)

Unsupervised

► PCA

- ► t-SNE
- k-means
- DBSCAN

Reinforcement

- ► SARSA-λ
- Q-Learning

Introduction to Machine Learning Algorithm selection & Training

Goal of training: make the correct prediction as often as possible

Incremental improvement:

- ► Metrics for **evaluating** performance and comparing solutions.
- ► Hyperparameter tuning: more an art than a science

Introduction to Machine Learning Making predictions

Training phase

Introduction to Machine Learning Summary

- Machine Learning is intelligent use of data to answer questions
- Enabled by an exponential increase in computing power and data availability
- Three big types of problems: supervised, unsupervised, reinforcement

Introduction to Machine Learning Summary

5 steps to **every** machine learning solution:

- 1. Data Gathering
- 2. Data Preprocessing
- 3. Feature Engineering
- 4. Algorithm Selection & Training
- 5. Making Predictions

Deep Learning

"Any sufficiently advanced technology is indistinguishable from magic." (Arthur C. Clarke)

Deep Learning Artificial Neural Networks

embedded VISION Summit

- ► First model of artificial neural network proposed in **1943**
- Analogy to the human brain greatly exaggerated
- Given some inputs (x), the network calculates some outputs (y) using a set of weights (w)

© 2020 Tryolabs

SGD

With a continuous and differentiable loss function, we can apply gradient descent

>tryo•labs

- Weights must be adjusted (learned from the data)
- Idea: define a function that tells us how "close" the network is to generating the desired output

Deep Learning Artificial Neural Networks

© 2020 Tryolabs

29

& tryo·labs

Deep Learning

Perceptron gained popularity in the 60s

The rise, fall, rise, fall and rise of Neural Networks

- Belief that would lead to true AI
- ► XOR problem and AI Winter (1969 1986)
- ► Backpropagation to the rescue! (1986)
 - Training of multilayer neural nets
 - ► LeNet-5 (Yann LeCun et al., 1998)
- Unable to scale. Lack of good data and processing power

Deep Learning The rise, fall, rise, fall and rise of Neural Networks

- ► Regained popularity since ~2006.
 - ► Train each layer at a time
 - Rebranded field as Deep Learning
 - Old ideas rediscovered (e.g., Convolution)
- Breakthrough in 2012 with AlexNet (Krizhevsky et al.)
 - Use of GPUs
 - Convolution

>tryo.labs

Image classification with Deep Neural Networks

 $2, 1, \ldots, 2,$ 6, 2, 2, 2, . . . 4, 2 0, 1, . . . 2, 6

>tryo-labs

Input

Output

embedded VISICN Summit

& tryo · labs

© 2020 Tryolabs

- Takes spatial dependencies into account
- Used as a feature extraction tool
- ► Differentiable operation → the kernels can be learned

Increment the network's capacity

Convolution, matrix multiplication and summation are linear

>tryo-labs

Image classification with Deep Neural Networks Non-linear activation functions

- ► Used to reduce dimensionality
- Most common: Max pooling
- Makes the network invariant to small transformations, distortions and translations.

Image classification with Deep Neural Networks **Putting all together**

embedded VISICN Summit

Image classification is a supervised problem

- ► Gather images and **label** them with desired output
- ► Train the network with **backpropagation**!

embedded VISION Summit

Image classification is a supervised problem

- ► Gather images and **label** them with desired output
- ► Train the network with **backpropagation**!

Image classification with Deep Neural Networks Surpassing human performance

embedded VISION Summit

ImageNet Classification with Deep Convolutional Neural Networks

 Alex Krizhevsky
 Ilya Sutskever
 Geoffrey E. Hinton

 University of Toronto
 University of Toronto
 University of Toronto

 kriz@cs.utoronto.ca
 ilya@cs.utoronto.ca
 hinton@cs.utoronto.ca

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully-connected

Deep Learning in the wild

>tryo-labs

Conclusions

Machine learning algorithms learn from data to find hidden relations, to make predictions, to interact with the world, ...

A machine learning algorithm is as good as its input data

Good model + Bad data = Bad Results

Deep learning is making significant breakthroughs in: speech recognition, language processing, computer vision, control systems, ...

If you are not using or considering using Deep Learning to understand or solve vision problems, **you almost certainly should try it**

Resource

Our work

An Introductory Guide to Computer Vision <u>https://tryolabs.com/resources/introductory-guide-computer-vision/</u>

Tryolabs Blog <u>https://www.tryolabs.com/blog</u>

Norfair https://github.com/tryolabs/norfair

To learn more...

Google Machine Learning Crash Course <u>https://developers.google.com/machine-learning/crash-course/</u>

Stanford course **CS229**: Machine Learning <u>https://developers.google.com/machine-learning/crash-course/</u>

Stanford course **CS231n**: Convolutional Neural Networks for Visual Recognition <u>http://cs231n.stanford.edu/</u>

embedded VISIMN Summit

Thank you!