

SensPro2

Highly Scalable Sensor Hub DSP for Computer Vision, AI, and Multi-sensor Fusion for Contextually Aware Devices Gil Abraham Business Development Director

Vision Business Unit

CEVA's Sensing and Connectivity for IoT

SensPro Architecture is Market Driven

More Sensors, More Data Generated

- Electronic devices gather information using sensors:
 - Visual Data: Cameras, ToF, Structured light, LiDar, Radar
 - Motion Data: Gyroscope, Magnetometer, Accelerometer
 - Audio Data: Microphones
- Analyzing the data requires both **AI** and traditional **DSP** approaches
 - Process each sensor independently
 - **Fusion** of the sensors data to get coherent information
 - Contextual awareness using AI to make decisions

Contextual Awareness

- Ability to gather information, analyze it and adapt the behavior accordingly
- A new type of processor architecture is required to efficiently process and fuse the data from these different sensors and data

Introducing SensPro2

Second Generation High Performance Sensor Hub DSP

Introducing SensPro2

Multiple IP Choices for Wide-Ranging Sensing & AI Applications

SensPro2 Configurations

	SensPro2	MAC Configuration			Torget Application		
	Core		INT8	INT16	FP32	Target Application	
New in Gen-2	SP50		64	16	Optional	pa La	
	SP100		128	32	Optional		
Enhanced in Gen-2		SP250	256	64	Optional		
	Gen-1	SP500	512	128	Optional	t at []	
		SP1000	1024	256	Optional		
New in Gen-2	SPF2		-	-	32		
	SPF4		-	-	64		

Self-contained processors, scaling in performance for a broad range of end markets

SensPro2 Scalability

- SensPro is designed to serve as a hub for processing and fusing data from multiple sensors including camera, Radar, LiDAR, ToF, microphones and inertial measurement units, for contextually-aware devices
- SensPro2 family is expanded to seven highly-configurable and self-contained DSPs, combining a CEVA-BX scalar processor and parallel vector compute units for floating point and integer data types, as well as deep learning inferencing
- SensPro2 employs a **common and scalable ISA** across all cores to enable users seamless SW migration between different SP cores while scaling the performance
- SensPro2 architecture offers dedicated ISA required to process sound, imaging, SLAM, Radar, and DNN inference workloads
- SensPro2 is offered in seven core configurations:
 - Fixed point cores **SP50, SP100, SP250, SP500, SP1000**
 - Floating point cores SPF2, SPF4
- SensPro2 offers a scalable solution for various processing and AI workloads while retaining code reuse across the family – whereas alternative DSPs only offer point solutions and cannot be scaled!

SensPro2 Feature Highlights

- 8-way VLIW, with highly configurable architecture
- ▶ 1.6GHz @ 7nm
- CEVA-BX DSP for Scalar Processing, control code for seamless migration
 - 4.3 CoreMark/MHz
- 3.2 TOPS (INT8)
 - 1024 8x8 MACs for the SP1000
- ► 400 GFLOPs
 - 64 Single Precision and 128 Half Precision FP MACs
 - Support for Complex Data for Radar
- Memory Architecture
 - 400 GByte/second Data Bandwidth
 - 4-Way Instruction Cache
 - DMA and Queue/Buffer Managers

SensPro2 VCU Overview

- Fixed-point ALU operations
 - Flexible MAC operation range for data re-use
 - Wide SIMD with support for all data types
 - Variety of arithmetic, logic, bit manipulation, and special instructions
- Comprehensive Non-Linear instruction set optimized for accuracy and performance
 - Including native support for Taylor series and Newton Raphson approximations
- Floating-point support
 - Single (SPFP) and half precision (HPFP), IEEE-754 compliant
 - Fused MAC, with low-latency internal accumulation
 - Supports complex arithmetic
 - "Intra" vector operations

M		VCU 1 (optional)							
	VCU 0								
		ALU base							
		Fixed point MACs							
		64/128/256/512 8x8							
		(or) 16/32/64/128 16x16 16 32x32							
		Floating point MACs							
		16-32 single precision							
		(or) 32-64 half precision							
		Non-linear instructions							
		Binary NN ISA							
		Histogram ISA							

SensPro2 – Artificial Intelligence

SensPro2 – Computer Vision & SLAM

SensPro[™]

Most powerful DSP for audio processing and sound AI

DeepSpeech2 SensPro2 performance boost relative to CEVA-BX2

SensPro2 – Radar

Range/Doppler Processing

- Mixed-radix DIT implementation:
 - 8X acceleration of high precision and High Dynamic Range: complex 16 & 32 bits
 - Dedicated ISA for DFT/FFT acceleration: Radix-2/Radix-3/Radix-4
 - Efficient support for FFT Windowing integrated into first FFT/DFT stage
 - Batch mode processing

Radar Detection

- Advanced detection algorithms: OS-CFAR
 - 4X acceleration using new VHIST ISA Advanced histogram and accumulated histograms support
 - Supporting 1D/2D/3D CFAR processing
 - Supporting Flexible sliding windows configuration
 - Efficient Multi-channel operation mode and optional Data re-use
- GO/SO-CFAR based detection
 - 2X acceleration by new MIN4/MAX4 ISA: find min/max in 4 input vectors by single operation
- Sorting Acceleration
 - 2X acceleration of all comparison based sorting algorithms by new Min/Max ISA

Complementary Software and Libraries

CEVA Deep Neural Network (CDNN) – NN Compiler

CEVA Deep Neural Networks

- Deep Neural network inferencing graph compiler w. automatic run time generation
- Graph Optimizer including accuracy optimization, retraining, and scaling per layer
- Comprehensive support for over 200 NNs
- Fully optimized for CEVA AI processors including SensPro2
- Support custom DNN accelerators (CDNN Invite) for seamless integration

CDNN-Invite API

- CDNN-Invite API enables **Customer's AI engine** to benefit from the comprehensive network support, and optimization of the **CDNN compiler**
- CDNN-Invite Device and Driver software run on any of the SensPro2 DSPs
- CEVA DSP enables:
 - Software support of layers that are supported by the customer hardware
 - Using CEVA or its ecosystem partners software
- CEVA offers OS support that enables usage of the CEVA-DSP for sensor task while the AI accelerator "crunches"

SensPro2 – Key Takeaways

- High performance
 - 6X peak performance (CV, SLAM) and 2X better AI (CNN, FC) vs. SensPro Gen-1
 - 10X better audio AI SP100 vs. CEVA-BX2
- Scalable family with 7 self-contained DSPs for wide range of sensing and AI applications
 - 0.2TOPS up to 3.2TOPS
- Modular Architecture with dedicated ISA for processing sound, imaging, SLAM, Radar, and DNN inferencing
 - Cost and Energy Efficiency
- Full SW toolchain with novel and Mature CDNN compiler and CDNN-Invite for custom AI engines

SensPro2

High Performance Sensor Hub DSP Architecture for wide-ranging AI Sensor Fusion-based applications

Thank You

- Gil Abraham
- Business Development Director, Vision Business Unit
- <u>Gil.Abraham@ceva-dsp.com</u>

