

Enabling Visual AI at the Edge From Surveillance Cameras to People Counters

Patrick Worfolk Synaptics

Synaptics at a Glance

Engineering Exceptional Experiences

End Markets and Products

Synaptics AI at the Edge

Family of SoCs		SyNAP [™] AI Developer Tools	Secure Al Processing	
•	Voice	 Open, full stack solution 	Analytics	
•	Video	Built on industry standard AI frameworks	Recognition	
•	Vision	 Seamless integration into secure, real-time video processing pipeline 	Enhancement	

SyNAP[™] AI Developer Tools

Synaptics Neural network Acceleration and Processing

- Easy AI model optimization and deployment
 - Import from TFLite, TensorFlow, PyTorch, Caffe and ONNX
 - Model optimization

Layer fusion, pruning, 8-bit quantization

• Network graph and metadata generation for target NPU

- Performance profiling with simulator or on silicon
 - Per layer analysis of network execution

Instructions, clock cycles, memory bandwidth

VS680 Multimedia SoC

VS680 Multimedia SoC

- Multimedia SoC
 - CPU, GPU and NPU
- Example applications
 - Smart displays & smart monitors
 - Set-top boxes, soundbars, & media streamers
 - Video conferencing
 - Smart cameras
 - Smart signage
 - Emerging computer vision IoT products

Example Application: Super-resolution

 Upscaling video to higher resolutions for displays, cameras, media streamers, set-top boxes, and video conferencing

Scale Factor	In	Out	FPS	HW Scaler VMAF	DNN Scaler VMAF
2X	FHD	4K UHD	>30	86	93
ЗХ	HD	4K UHD	>60	66	77
4X	qHD	4K UHD	>60	49	63

FHD → 4K UHD: 10B MACs/frame

Output from DNN Scaler

See Synaptics' demo: Real-time Video Post-processing Using Machine Learning

Example Application: Deep Night Vision

 Denoising images captured in low light conditions, preserving color and structure

- Denoising DNN
 - FHD image
 - 15 FPS (66 ms exposure)
 - 150K weights
 - 20B MACs per frame

Noisy Low-Light Raw Bayer Image

DNN Denoised Raw Bayer Image

Example Application: Imaging Through a Display

- To minimize notch/bezel area, there is great interest to place a camera behind a display
- A DNN can be used to fix the distortion from the display
- Through display ToF depth and 2D IR image restoration DNN
 - VGA ToF depth image + IR image
 - 22 FPS (198 raw phase images/s)
 - 150K weights
 - 12B MACs per frame

Through Display

No Display

Through Display with DNN Correction

Depth

Katana Low Power SoC

Katana Low-Power SoC

- Low-power SoC
 - CPU, Synaptics multi-core DSP, open DSP, Synaptics NPU
- Example applications
 - Person and object detection
 - Inventory tracking
 - Keyword spotting/audio event detection
 - Environmental sensing
 - Emerging battery-powered audio and vision IoT products

Example Application: People Counting

- Counting people passing through a door, within a room, entering a region
 - Battery powered for ease of install
 - Low resolution B&W camera
- Person detection DNN
 - QVGA image
 - 10 FPS
 - 100K weights
 - 20M MACs per frame

ember

See Synaptics' demo on the Katana tool chain

Synaptics Edge AI SoC Roadmap Highlights

Conclusions

Synaptics[®]

 Advances in edge compute and machine learning are allowing whole new classes of applications to be deployed in edge devices

Pervasive sensors, ubiquitous high-speed connectivity, AI, and immersive media will drive the next transformation of augmented reality, autonomous vehicles, smart buildings, and digital cities.

• Synaptics has a family of SoCs that enable AI at the edge for a range of voice, video, and vision applications

15

Soc

2021 Embedded Vision Summit

Resources

Demo: Real-time Video Post-processing Using Machine Learning

Demo: Smart Video Conferencing on the Edge

Demo: From NN to Edge with Synaptics' Katana Processor and Eta Compute's TENSAI Flow Tool

Synaptics Website

Edge Computing SoCs with AI

https://www.synaptics.com/technology/edge-computing

Thank You

