

DepthAI: Embedded, Performant Spatial AI and CV

Brandon Gilles Luxonis

Start with the Why

- Pressing health/safety problem
- Combination 3 available technologies solve the problem:
 - Spatial sensing (disparity depth, Lidar)
 - AI (neural inference)
 - CV (feature extraction tracking, platform pose/motion estimation, etc.)
- But only tractable if on an embedded system (low size, weight, power, and cost) and performant
- No platform existed that had all 5 of these:
 - Embedded, Performant, Spatial, Al and CV

What is Spatial AI and CV?

- The capability to get neural inference results (e.g. semantic segmentation) in physical space.
 - E.g.: XYZ locations of all the ripe strawberries in real-time.
- Tight fusion of
 - AI (object detection, semantic segmentation, etc.)
 - with CV (platform motion/pose, object tracking)
 - and **Depth** (disparity)
 - to give **3D position** in world coordinates of detected **objects**, **features**, or **semantic** labels (at the pixel level).

Spatial AI and CV – Basic Example

https://youtu.be/sO1EU5AUq4U

Spatial AI and CV – Fast Motion

New Era of Performance on Embedded Systems

- Traditionally, the capability to handle any of the following necessitated a full-fledged operating system-capable computer:
 - High resolution image sensors
 - High frame rates
 - Multiple image sensors
 - Complex AI + CV pipelines
 - Spatial sensing
- This is now all doable on an embedded system
- And this opens up all sorts of applications which were previously intractable

Example: Al-Guided Lossless Zoom

https://youtu.be/H-FjrbWsaKg

Example: Al-Guided Lossless Zoom

Asymmetric Multi-Processor Embedded System

- Network on Chip (NoC) architecture allows tying together AI/CV/Spatial hardware:
 - 16 Vector processors (think GPU, but architected for computer vision)
 - ~20 fixed-function CV processors (Harris, Canny, warp/dewarp, motion estimation)
 - 2 Al processors
 - 1 semi-global-matching disparity-depth hardware block
- The network on chip is prioritizable, so that it's selectable which functions drink from the fire-hose of the high-resolution sensor(s)
- Our DepthAl Pipeline Builder allows quick/easy configuration for your application

DepthAl Pipeline Builder (Gen2)

- Node and Graph Based Pipeline
- 3 Node Modalities:
 - 1. Pre-canned Hardware-accelerated CV/AI/Spatial functionalities
 - 2. CPython bindings for running scripts directly on DepthAl
 - 3. OpenCL, ML-Framework-based vectorized math (e.g <u>here</u>) for custom hardware-accelerated CV/AI/Spatial functionalities
- The network on chip builds the graph allowing extremely high data-rate and lowlatency connection between the nodes
- The DepthAI resource manager configures the network on chip

Gen2 Pipeline Builder Pre-Canned Nodes

- Neural inference
- 3D object localization
- Object tracking
- Stereo depth
- h.264/h.265 encoding
- background subtraction
- feature tracking
- motion estimation
- arbitrary crop/rescale/reformat and ROI return (e.g. allowing lossless zoom)

DepthAl Pipeline Builder Example

https://github.com/luxonis/depthai-experiments/tree/master/gen2-gaze-estimation#gen2-gaze-estimation

12

Built for Products – Open-Source, MIT-Licensed

- We built the platform as we, engineers, would want it:
 - Open Source so that it can be autonomously integrated into other codebases
 - Permissively licensed; it can be built into closed-source systems without concern
- DepthAl is Open-Source and MIT-Licensed
 - Hardware
 - Firmware
 - Software
 - ML-Training & Resources

Open-Source Hardware – That You Can Buy

- Can buy all of these directly and us as supported products
- They are also all open-source reference designs, with full Altium Designer source files

Open-Source Hardware

© 2021 Luxonis

Open-Source Firmware

Full DepthAl Pipeline Builder Available over SPI Interface, with C++:

```
dai::Pipeline p;
// set up NN node
auto nn1 = p.create<dai::node::NeuralNetwork>();
nn1->setBlobPath(nnPath);
// set up color camera and link to NN node
auto colorCam = p.create<dai::node::ColorCamera>();
colorCam->setPreviewSize(300, 300);
colorCam->setResolution(dai::ColorCameraProperties::SensorResolution::THE 1080 P);
colorCam->setInterleaved(false);
colorCam->setCamId(0):
colorCam->setColorOrder(dai::ColorCameraProperties::ColorOrder::BGR);
colorCam->preview.link(nn1->input);
// set up SPI out node and link to nn1
auto spiOut = p.create<dai::node::SPIOut>();
spiOut->setStreamName("spimetaout");
spiOut->setBusId(0);
nn1->out.link(spiOut->input);
return p;
```

- This means you can no-joke have tinyYOLOv4 running at 30FPS with an ATmega8 "host".
- ESP32, STM32, MSP430, etc. are commonly used.
- Others are easy to integrate
- microROS (ESP32) example

Open-Source Software

- Permissively (MIT-) Licensed so that closed-source products can be built royalty-free.
- We built this how we would want it.

- Python and C++ API parity
- ROS1 and ROS2 Integration
- Unity Plugin
- Wealth of reference pipelines

Open-Source Software

18

© 2021 Luxonis

DepthAl Resources

DepthAl Resources

DepthAl Documentation

https://docs.luxonis.com/en/latest/

DepthAl Community Discord

https://discord.gg/EPsZHkg9Nx

Where to buy DepthAI:

- Mouser
- Sparkfun
- OpenCV

2021 Embedded Vision Summit

Luxonis Demos:

- From-Behind Collision Detection for People Who Ride Bikes
- Neural-Inference-Controlled
 Crop/Zoom and H.265 Encode
- Spatial AI and CV for Human Machine Safety

© 2021 Luxonis 19