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* “Networks have to be huge”

* “Significant compression significantly compromises accuracy”
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* “Tiny networks should be deployed on CPUs and

microcontrollers” TI nyM L

Machine Lea
Arduino and Ultra-Low-Power Microcontrollers

Pete Warden &
Daniel Situnayake
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 NAS-FPN (Ghaisi et al., 2019): 166.5 M parameters
e 166.5x10° parameters x 32b/parameter = ~5.3 Gb

* Every bit corresponds to a yes/no question

* Do we really need 5.3 billion questions and 2.6 TFLOPS to find the dog in the picture?

* Slight shifts of pgsitiQn pe dlosionfs. dpals matter to us

* We can pick a ppi Al our hardware
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Why are today’s networks so large?, co it VISI“ N

* GPT-3:175 B parameters
e At 32 bits per parameter: 700 GB just for parameters!
* Even with 8-bit parameters: 175 GB = 1,400,000,000,000 bits

* Do we really need 1.4 trillion questions... for anything?

e 175 B param V&H%&Y W%Y\’{Ow \A\’&“\A uting hardware
e Matrix mult ") WHEQE
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 What if we had a program, PO, that generates GPT-3’s parameters as output?

 What if we had a program P1 that generates PO? P2 that generates P1? Etc.
* Computation is cheap, but memory storage and movement are expensive = compress!

* Number of parameters is a poor description of complexity = Kolmogorov is better

GPT-3’s
parameters
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Compute-intensive decompression = better com e

Not as exotic as it sounds

Convolutional neural networks

e Assume the universe is translationally invariant

 Store one set of weights = apply to every pixel or region

Causality

* No way of knowing whether the universe is causal
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Convolutions Subsampling Convolutions Subsampling  Fully connected

e Assuming causality — present is function(past) — massively compresses our models

Viruses

e \iruses
transla

Human g

e Just ad(
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e Hutter: fastest program that computes f is among the shortest programs that (provably)
compute f

* https://arxiv.org/abs/cs/0206022

* Kolmogorov complexity: K(f) = length of shortest possible program to compute f

* Levin complexity: adds penalty to Kolmogorov complexity to include execution time
e L(f) = min[K(f) + log(time(f))] = min[size of program + how long to wait]

* For ML, modified Levin complexity: shortest program given performance requirements

e Everyone wants fast ML = also wants small ML = everyone should want TinyML

Perceive .
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* Essential premises of von Neumann style of computation
* Every operation loads from memory, computes something, and stores in memory
 Memory throughput completely dominates system throughput

» Execution model is (typically) serial and control-heavy = ~1 computing element

Perceive .
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Neural networks beg for massive parallelism

e Typical networks run many filters on the same data — the previous layer(s)

* Independent computations can be run in parallel

* Moving data costs much more power and time than computing o . ‘
- - ng 'KING KONC:
* Parallel computing elements increase computing “surface area” | —— Patel

* Close proximity to much more data = significant reduction in time and power
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* Principled compression can improve ML everywhere

* Needed for TinyML
» Kolmogorov/Levin complexity reduces arbitrariness while compressing models

* It’s not about the number of weights or just using fewer bits per weight
* Massively parallel computation and ultra-low-latency memories make ML practical

e Stop aiming TinyML at CPUs, microcontrollers, and the von Neumann bottleneck

* Neural networks are highly parallel, non-von Neumann computing devices

Perceive .
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* If the goal of TinyML is...

* High accuracy at low power = principled compression + special-purpose hardware
* High performance at low power = special-purpose hardware

* High performance at high accuracy —> special-purpose hardware + principled compression

* The goal of ML is high performance at high accuracy = TinyML is how to get there

* And you get low power as a bonus!

e Perceive: novel, principled compression and special-purpose hardware
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Perceive 2021 Embedded Vision Summit
https://www.perceive.io “Facing Up To Bias” (Talk)
TinyML

https://www.tinyml.org/

Levin complexity

http://www.scholarpedia.org/article/Universal
search
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