

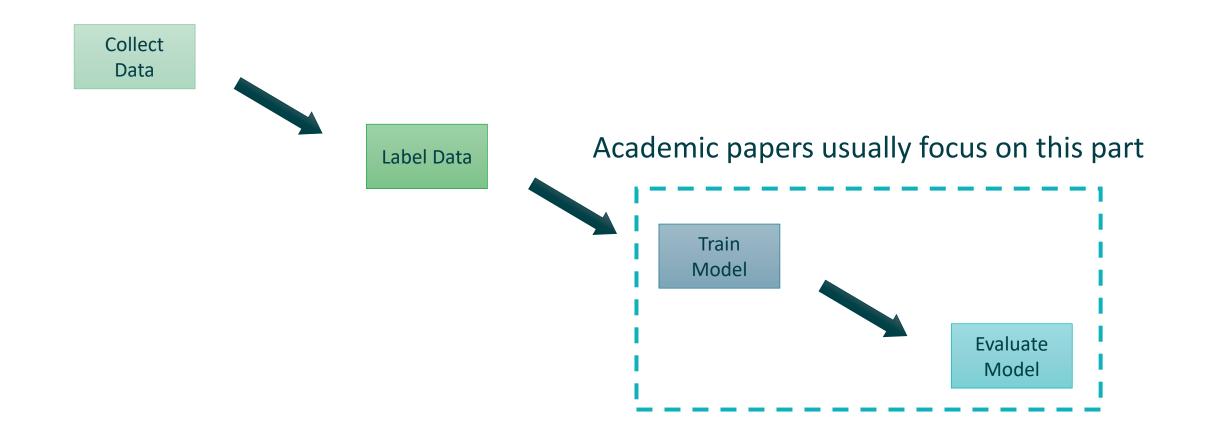
Data Collection in the Wild

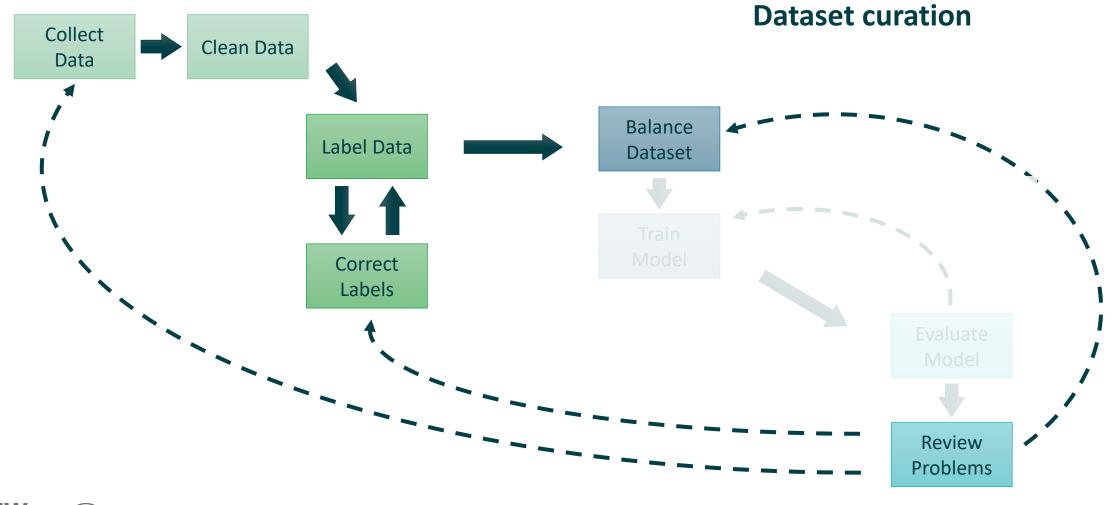
Vladimir Haltakov BMW Group

Data Collection for Real World Applications

- Robust detection and classification of traffic signs in challenging conditions
- Support of all **country specific** traffic sign variants
- Organized a worldwide data collection campaign
- Traffic light recognition
 - Robust detection performance in **rare situations**
 - Support for all traffic light variants
 - Created a research dataset

In a Perfect World...





Data Collection

- Sample the **real world distribution** as accurately as possible.
 - Lighting conditions
 - Distance and viewpoints
 - Object variations
 - Problem specific variations
- **Define the boundaries** of your dataset
- Plan the collection of the images carefully

The dataset **does not** accurately **represent** the **real** distribution → **biased dataset**

 $\underline{\wedge}$ We cannot detect the bias during development $\underline{\wedge}$

- Both training and test data will contain the same bias
- The model will achieve **high score** on the **test data**
- The model will **perform poorly** when **deployed** in the **real world**

If we train only with

we will not be able to detect

Data Cleaning

- Remove bad samples from the dataset
 - Overexposed or underexposed images
 - Images in **irrelevant** situations
 - Faulty images
- Bad images **reduce** the **performance** of our model

Label the Data

- Different types of labeling: manual, semi-automatic, fully-automatic, self-supervised
- Which data to label?
 - Can we label all data?
 - Can we perform **per-labeling** during data collection?
 - How to label according to the **real distribution**? (avoid Sampling Bias)
- **Iterative process**: label \rightarrow train \rightarrow evaluate \rightarrow choose difficult samples \rightarrow label

Label Correction

- You will get **wrong labels!** Humans make mistakes...
- Wrong labels can hurt the model performance and lead to wrong conclusions
- Plan a process to correct labels
 - Label samples multiple times
 - Spot checks before training to find systematic problems
 - Improve labeling guidelines and tools
 - Review test results and fix labels

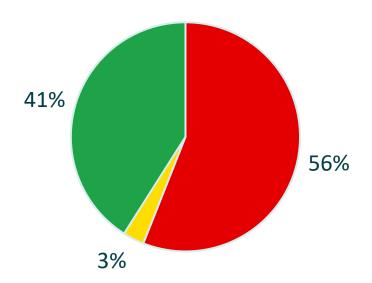
Label Errors in Research Datasets

- New study from MIT on label errors in popular research datasets (e.g. ImageNet)
 - Northcutt et al. Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks, 2021
- On average 3.4% label errors in the test dataset (5.8% in ImageNet)
- Models performing worse on the wrong labels, perform better on the corrected labels!
 - The better models are often much **smaller**!

Problem: some classes appear more often than others.

▲ Classifiers ignore underrepresented classes ▲

Traffic light colors distribution



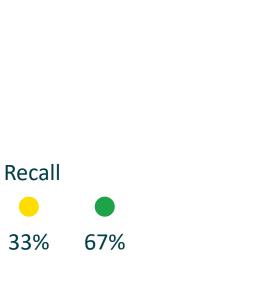
97% accuracy if yellow is ignored completely

Problem: some classes appear more often than others.

 \bigwedge Classifiers **ignore underrepresented** classes \bigwedge

Use the right **evaluation metrics**:

• Recall



True Predicted

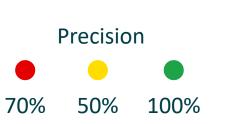
100%

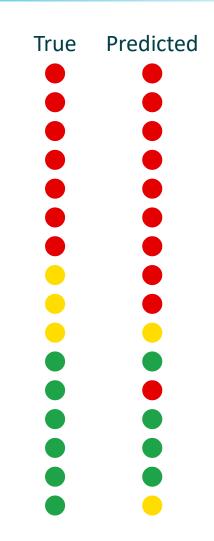
Problem: some classes appear more often than others.

 \bigwedge Classifiers **ignore underrepresented** classes \bigwedge

Use the right **evaluation metrics**:

- Recall
- Precision





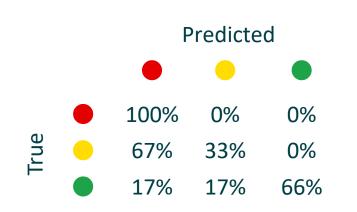
embedded VISI N Summit

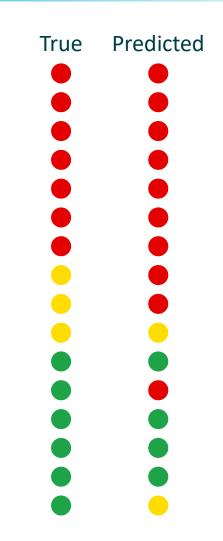
Problem: some classes appear more often than others.

▲ Classifiers ignore underrepresented classes ▲

Use the right evaluation metrics:

- Recall
- Precision
- Confusion Matrix



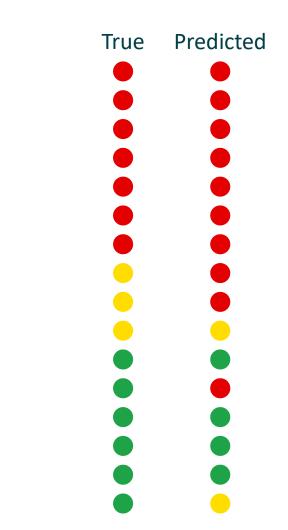


Problem: some classes appear more often than others.

▲ Classifiers ignore underrepresented classes ▲

Use the right **evaluation metrics**:

- Recall
- Precision
- Confusion Matrix
- F1 score



F1 Score

40%

80%

82%

2021 embedded VISION summit

Remove examples of the dominant classes

• Randomly throw away samples

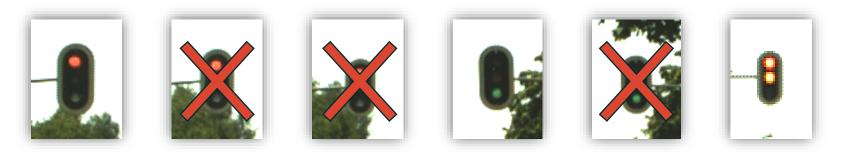
BM

GR

We lost all green samples!

Remove examples of the **dominant** classes

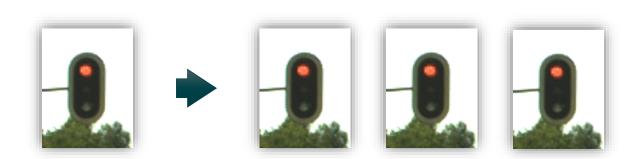
- Randomly throw away samples
- Throw away **similar images**
 - Compute image **features** (e.g. using a pretrained CNN)
 - **Cluster** images by visual appearance (e.g. k-means, DBSCAN)
 - Remove similar samples (e.g. Near-Miss, Tomek Links)



2021 embedded VISI N summit

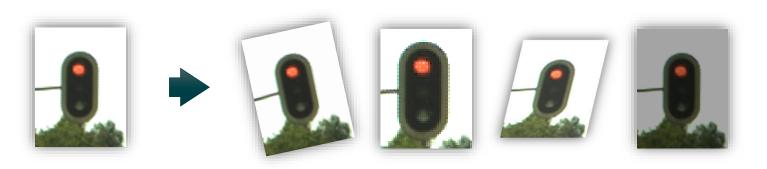
Add **new examples** from the **underrepresented** classes

• **Repeat** samples (prone to overfitting)



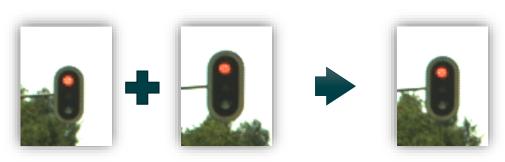
Add **new examples** from the **underrepresented** classes

- Repeat samples (prone to overfitting)
- Data augmentation (e.g. rotate, flip, zoom, skew, change color)



Add new examples from the underrepresented classes

- **Repeat** samples (prone to overfitting)
- Data augmentation (e.g. rotate, flip, zoom, skew, change color)
- **SMOTE** (Synthetic Minority Oversampling Technique)
 - Create new samples by combining samples in feature space



2021 embedded VISI n summit

Add new examples from the underrepresented classes

- **Repeat** samples (prone to overfitting)
- Data augmentation (e.g. rotate, flip, zoom, skew, change color)
- **SMOTE** (Synthetic Minority Oversampling Technique)
 - Create new samples by combining samples in feature space
- **Synthetic** images (GAN, simulation) render completely new images

Richter et al. Playing for Data: Ground Truth from Computer Games. ECCV 2016

Balance the Dataset - Adapt the Loss Function

Set higher **penalties** for underrepresented classes in the loss function

- No changes to the data needed
- Similar effect as removing or duplicating samples
- Finer control on the weights

Examples

- **PyTorch:** torch.nn.CrossEntropyLoss(*weight=None*, ...)
- TensorFlow: tf.keras.Model.fit(class_weight=None, ...)

ember

Bad performance on the test dataset? Problem with the model?

A lot of the times the **problem** is in the **dataset** and not in the model:

- Bad data samples (remove)
- Wrong labels (correct)
- **Bugs** in the **evaluation** metrics (fix code)
- Lack of training data (collect and label more)

Dataset curation is an iterative process!

Beware of Simpson's Paradox

2021 embedded VISI n summit

Evaluate model on current data

• 1000 training and 1000 test samples \rightarrow 90% accuracy

Label additional 200 samples, retrain and evaluate again

• 1100 training and 1100 test samples \rightarrow 85% accuracy

The additional data breaks the model? Should we remove it?

Beware of Simpson's Paradox

Evaluate model on current data

1000 training and 1000 test samples → 90% accuracy

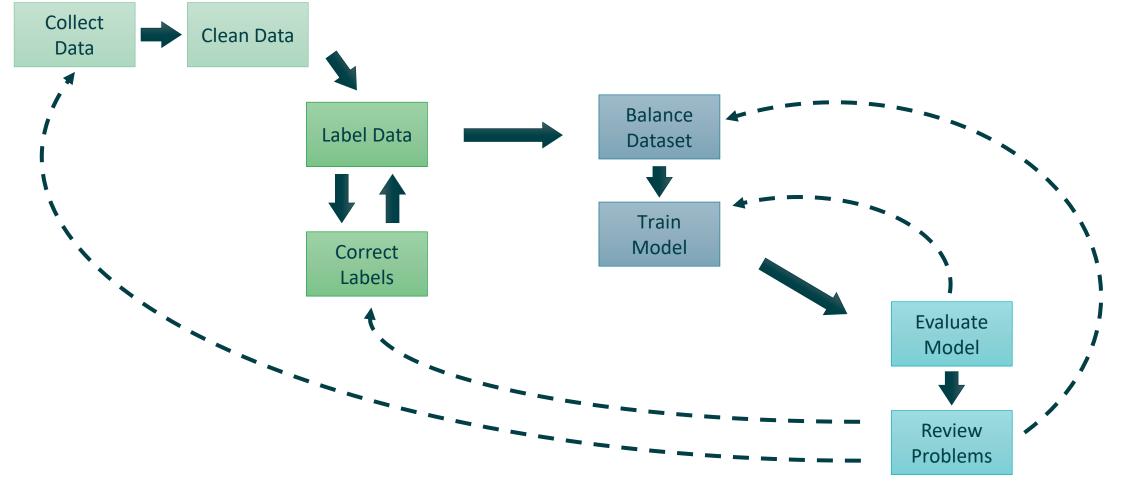
Label additional 200 samples, retrain and evaluate again

1100 training and 1100 test samples → 85% accuracy

Initial model
(1000 samples training)Retrained model
(1100 samples training)Accuracy on initial 1000 samples90% (900/1000)91% (910/1000)Accuracy on new 100 samples-25% (25/100)Overall accuracy90% (900/1000)85% (935/1100)The new samples are much more difficult

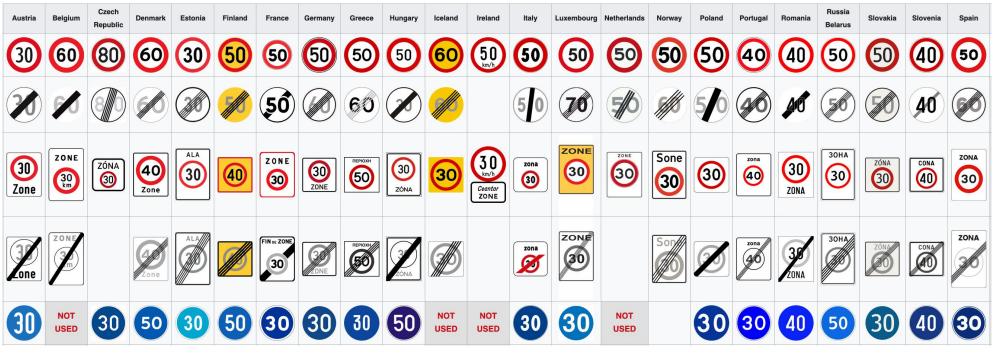
The model actually got better!

Dataset Curation



Your model starts performing worse with time when deployed

The problem - the real world changes!



Source: https://en.wikipedia.org/wiki/Comparison_of_European_road_signs

Your model starts performing worse with time when deployed

The problem - the real world changes!

Source: https://www.arabianbusiness.com/transport/402769-new-abu-dhabi-speed-signs-include-140kph-160kph-limits

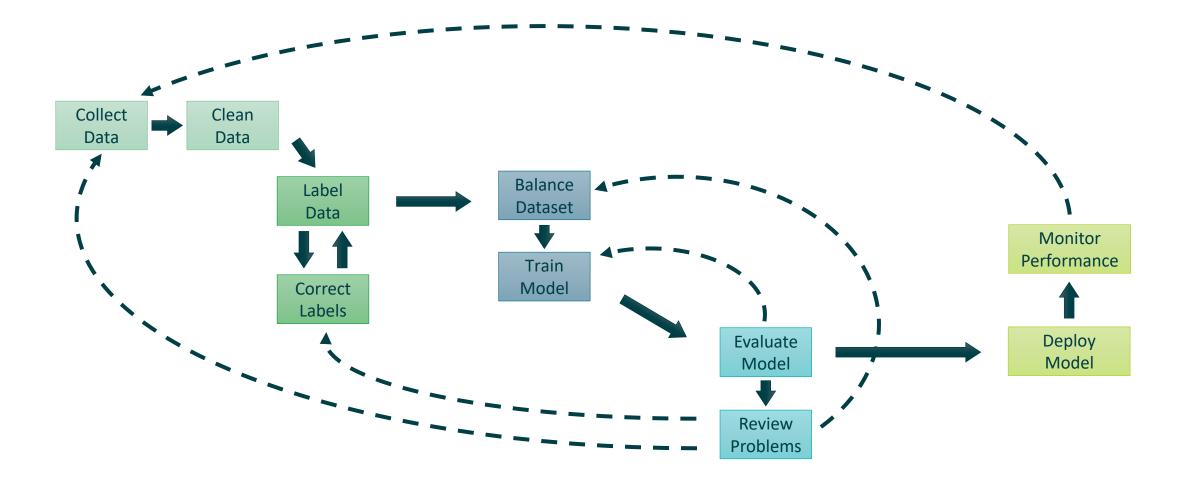
Your model starts performing worse with time when deployed

The problem - the real world changes!

Be prepared to **adapt your model** after it is deployed

- Continuously evaluate the performance of the deployed model
- Define a process to **collect data** from **production**
- Define a process to **retrain** your model **continuously** and **redeploy**

Concept Drift - Monitoring the Model in Production



- Dataset curation is crucial for a good model performance
- Dataset curation is an **iterative process**
- Beware of **common biases** that may lead to wrong conclusions
- Be prepared to handle **concept drift**

Imbalanced-learn Python library

https://github.com/scikit-learncontrib/imbalanced-learn

Survey on deep learning with class imbalance <u>https://journalofbigdata.springeropen.com/artic</u> <u>les/10.1186/s40537-019-0192-5</u>

Traffic lights recognition dataset

http://campar.in.tum.de/Chair/ProjectTrafficLig htsDetection

Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks

https://arxiv.org/abs/2103.14749

2021 Embedded Vision Summit

Watch my other talk

"Is my Model Performing Well? It Depends..."