emhe%_lgg(l y Data Collection in the Wild
VI S I n Vladimir Haltakov
Summlt BMW Group

VIRTUAL | MAY 25-27

L
5
i
s
and'
seats
L




7 2021
' embedded

Data Collection for Real World Applicaff

* Traffic sign recognition

e Robust detection and classification of traffic signs in
challenging conditions

e Support of all country specific traffic sign variants
* Organized a worldwide data collection campaign

* Traffic light recognition
* Robust detection performance in rare situations
* Support for all traffic light variants
* Created a research dataset
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 Sample the real world distribution as accurately as possible.

* Lighting conditions |
e Distance and viewpoints
* Object variations
* Problem specific variations
* Define the boundaries of your dataset

* Plan the collection of the images carefully
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Beware of Sampling Bias

The dataset does not accurately represent the real distribution 2> biased dataset

A We cannot detect the bias during development A

* Both training and test data will contain the same bias
 The model will achieve high score on the test data

 The model will perform poorly when deployed in the real world

we will not be able to detect
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* Remove bad samples from the dataset
* Overexposed or underexposed images
* Images in irrelevant situations
* Faulty images

* Badimages reduce the performance of our model
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* Different types of labeling: manual, semi-automatic, fully-automatic, self-supervised

* Which data to label?
* Can we label all data?
* Can we perform per-labeling during data collection?

* How to label according to the real distribution? (avoid Sampling Bias)

* Iterative process: label = train = evaluate = choose difficult samples = label
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* You will get wrong labels! Humans make mistakes...

* Wrong labels can hurt the model performance and lead to wrong conclusions

* Plan a process to correct labels
* Label samples multiple times
» Spot checks before training to find systematic problems
* Improve labeling guidelines and tools

* Review test results and fix labels
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* New study from MIT on label errors in popular research datasets (e.g. ImageNet)

* Northcutt et al. Pervasive Label Errors in Test Sets Destabilize Machine Learning
Benchmarks, 2021

* On average 3.4% label errors in the test dataset (5.8% in ImageNet)

* Models performing worse on the wrong labels, perform better on the corrected labels!
* The better models are often much smaller!
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Problem: some classes appear more often than others.

e ] Traffic light colors distribution
/\ Classifiers ignore underrepresented classes A\

41%

56%

3%

97% accuracy if yellow is
ignored completely
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Problem: some classes appear more often than others. Tr‘”e Pred‘iCtEd
A Classifiers ignore underrepresented classes A : :
@ ®
@ ®
Use the right evaluation metrics: O o
® ®
* Recall Recall o
O O ®
100% 33% 67%
® o
@ @
® o
® o
® o
®
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Problem: some classes appear more often than others. Tr‘”e Pred‘iCtEd
A Classifiers ignore underrepresented classes A : :
O @
O @
Use the right evaluation metrics: O o
O @
* Recall Precision o
o
* Precision 7;/ -~y 1o‘o<y
0 (o) 0 ' ‘
O @
® o
® o
® o
®
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Problem: some classes appear more often than others. Tr‘”e Pred‘iCtEd
/\ Classifiers ignore underrepresented classes A\ : :
O @
O @
Use the right evaluation metrics: O o
O @
* Recall Predicted o
. O O ®
* Precision
. _ ® 100% 0% 0% P P
* Confusion Matrix L 67% 33% 0% ® ®
|_
® 17% 17% 66% ® ®
® o
® o
®
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Problem: some classes appear more often than others. Tr‘”e Pred‘iCtEd
A Classifiers ignore underrepresented classes A : :
O @
O @
Use the right evaluation metrics: O o
O @
e Recall F1 Score o
* Precision ¢ ° °
82% 40% 80%
+ Confusion Matri s o
onfusion Matrix ® ®
. o o
F1 score ® ®
® o
®
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Remove examples of the dominant classes

* Randomly throw away samples

We lost all green samples!

Lk d %
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Remove examples of the dominant classes

 Randomly throw away samples
* Throw away similar images
 Compute image features (e.g. using a pretrained CNN)
e Cluster images by visual appearance (e.g. k-means, DBSCAN)

 Remove similar samples (e.g. Near-Miss, Tomek Links)

Lk &y
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Add new examples from the underrepresented classes

* Repeat samples (prone to overfitting)

5 ARgls \is X
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Add new examples from the underrepresented classes

* Repeat samples (prone to overfitting)

 Data augmentation (e.g. rotate, flip, zoom, skew, change color)

EMOWLJP W © 2021 BMW Group 19



Balance the Dataset - Oversampling

Add new examples from the underrepresented classes

* Repeat samples (prone to overfitting)

* Data augmentation (e.g. rotate, flip, zoom, skew, change color)
e SMOTE (Synthetic Minority Oversampling Technique)

* Create new samples by combining samples in feature space
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Balance the Dataset - Oversampling

Add new examples from the underrepresented classes
* Repeat samples (prone to overfitting)

* Data augmentation (e.g. rotate, flip, zoom, skew, change color)

SMOTE (Synthetic Minority Oversampling Technique)

* Create new samples by combining samples in feature space

Synthetic images (GAN, simulation) — render completely new images

Richter et al. Playing for Data: Ground
- Truth from Computer Games. ECCV 2016
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Set higher penalties for underrepresented classes in the loss function
* No changes to the data needed
e Similar effect as removing or duplicating samples

* Finer control on the weights

Examples
* PyTorch: torch.nn.CrossEntropyLoss (weight=None, ...)
e TensorFlow: tf.keras.Model.fit (class _weight=None, ...)

EMOWLJP W © 2021 BMW Group 22
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Bad performance on the test dataset? Problem with the model?

A lot of the times the problem is in the dataset and not in the model:
* Bad data samples (remove)

 Wrong labels (correct)

e Bugs in the evaluation metrics (fix code)

e Lack of training data (collect and label more)

Dataset curation is an iterative process!
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Evaluate model on current data

e 1000 training and 1000 test samples = 90% accuracy

Label additional 200 samples, retrain and evaluate again

e 1100 training and 1100 test samples = 85% accuracy

The additional data breaks the model? Should we remove it?
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Evaluate model on current data
e 1000 training and 1000 test samples = 90% accuracy
Label additional 200 samples, retrain and evaluate again
e 1100 training and 1100 test samples = 85% accuracy The model actually got better!
Initial model Retrained mo
(1000 samples training) (1100 samples t¥aining)
Accuracy on initial 1000 samples 90% (900/1000) 91% (910/1000)
Accuracy on new 100 samples - 25% (25/100)
Overall accuracy 90% (900/1000) /85% (935/1100)

The new samples are much more difficult
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Your model starts performing worse with time when deployed

The problem - the real world changes!
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Source: https://en.wikipedia.org/wiki/Comparison_of European_road_signs
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Your model starts performing worse with time when deployed

The problem - the real world changes!

Source: https://www.arabianbusiness.com/transport/402769-new-abu-dhabi-speed-signs-include-140kph-160kph-limits
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Your model starts performing worse with time when deployed

The problem - the real world changes!

Be prepared to adapt your model after it is deployed
* Continuously evaluate the performance of the deployed model
* Define a process to collect data from production

* Define a process to retrain your model continuously and redeploy
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* Dataset curation is crucial for a good model performance

* Dataset curation is an iterative process
 Beware of common biases that may lead to wrong conclusions

* Be prepared to handle concept drift
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Imbalanced-learn Python library 2021 Embedded Vision Summit
https://github.com/scikit-learn-
contrib/imbalanced-learn Watch my other talk
Survey on deep learning with class imbalance “Is my Model Performing Well? It

https://journalofbigdata.springeropen.com/artic Depends...”
les/10.1186/s40537-019-0192-5

Traffic lights recognition dataset

http://campar.in.tum.de/Chair/ProjectTrafficlig
htsDetection

Pervasive Label Errors in Test Sets Destabilize
Machine Learning Benchmarks

https://arxiv.org/abs/2103.14749
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