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Simultaneous

Localization and Mapping

— AN

Recover state of a vehicle or A/-\

Recover location of landmarks in
sensor platform, usually over

. . some common reference frame.
multiple time-steps. \_/'

Simultaneous: We must do these tasks at the same time, as both quantities are
initially unknown.
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Image Source: A History of Ancient Geography among the Greeks and Romans from the Earliest Ages till the Fall of the Roman
Empire via Wikipedia
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Image Source: COLMAP / Schonberger, Johannes Lutz and Frahm, Jan-Michael, “Structure From Motion Revisited”, CVPR 2016

© 2021 Skydio 4

Slydio


https://demuc.de/colmap/

SLAM at Skydio embedded
summit

Visual Inertial Odometry (VIO) on the

Skydio drone, an embedded system.
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SLAM vs. Localization m e
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Image Source: E. Kaplan, C. Hergarty,
Understanding GPS Principles and Applications, Video Source: Skydio
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Formulating a SLAM Problem e
| SUIm m 1T
For every SLAM problem, we have two key ingredients:
1) One or more sensors:
Cameras Inertial Measurement Unit LiDAR/Range-finders RGB-D/Structured Light

Source: MatrixVision Source: Lord MicroStrain Source: Velodyne Source: Occipital
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https://www.matrix-vision.com/USB2.0-single-board-camera-mvbluefox-mlc.html
https://www.microstrain.com/inertial/3DM-GX5-10
https://velodynelidar.com/
https://occipital.com/
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2) A set of states we wish to recover.

3D mapping

Ego-motion: Rotation,
position, velocity

World Structure (Map) Calibration Parameters

’ Image Source: DroneTest
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https://blog.dronetrest.com/inertial-sensor-comparison-mpu6000-vs-mpu6050-vs-mpu6500-vs-icm20602/

Sensor Selection

* Choice of sensor will drive many downstream design considerations.

® Consider the sensor measurement model:

Ego-motion Calibration parameters

| |
h(x,m,k)+ e,
| | |

Sensor output Map Noise

Z
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Take many measurements (possibly from many sensors), and recover the ego-motion,
map, and calibration parameters.

J— SLAM System

‘ © 2021 Skydio 10
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Example — Calibration

Intel RS410 [
JABAs0- 100 AN

649272020167

Tire inflation will affect the scale of wheel Un-modelled extrinsic rotation between IMU and
odometry, as could slippage between the tire and camera may cause increased drift in a visual SLAM
the road surface. pipeline.
Image source: MotorTrend.com Image source: MWee RF Microwave Intrinsic temperature distortion may also introduce

unexpected errors into vision estimates.

Image Source: Skydio
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https://www.motortrend.com/news/what-is-traction-control/
https://www.mwee.com/news/intel-realsense-3d-camera-incorporates-imu
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When selecting a camera sensor for your platform, you have the choice of global or
rolling shutter.

Exposure Start-.. .- Exposure Stop Exposure Start .. .- Exposure Stop
Global Reset :Line Readout Line Reset Line Readout

2 2

O
K, ¥
2 2
ol ol

Time
’ Image credit: LucidVision
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https://thinklucid.com/tech-briefs/understanding-digital-image-sensors/

Slydio

Example — Rolling Shutter

Rolling shutter deforms rigid objects like the
horizon line and the vehicle itself.

Global-shutter model:

Camera projection
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Point in the world.

1

Z :\ﬂ' (Tzf) (to) N
T T

Measured location in

. Pose of the camera at
image.

time to

Rolling-shutter model:

T

to T

D D)

N\

Transformation of world
points into sensor frame.

T¢ (t) dt & py,

Inclusion of higher-order derivatives in the measurement model increases

computational cost.
© 2021 Skydio
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z = h(x,m, k)

* All sensors exhibit some minimum amount of noise.

* We distinguish between noise and model error.

/ S

Errors resulting from a limitation in our
A random error that can only be sensor model.

modeled via statistical means. . . . .
Example: failure to include a calibration

Example: thermal electrical noise. parameter.
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* Owing to noise in the sensor inputs, SLAM is an inherently uncertain process.
* We can never recover the “true” states, only uncertain estimates of them.
* More measurements usually means reduced uncertainty...

® ...Butit also means increased computational cost.
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* Choice of sensor may also influence map parameterization.

Collection of

photographs? 2D LiDAR scans?

Image Source: Noah Snavely Image Source: Skydio

Image Source: B. Bellekens et al., A
Benchmark Survey of Rigid 3D Point Cloud

’ Registration Algorithms, 2015
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https://twitter.com/Jimantha/status/1117990470473351169?s=20
https://www.researchgate.net/publication/265186421_A_Survey_of_Rigid_3D_Pointcloud_Registration_Algorithms
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Sensor cost

.- Where we'd like to be (impossible).

Computational cost

Solution error
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Factor Graphs N VIS
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* Factor Graphs are a convenient method of graphically representing a SLAM problem.

e

Edges (factors) represent
information about the states, in
Nodes represent states —

the form of measurements or
)

priors.

Fa.ctors may be unary, In a SLAM problem, we will
binary, ternary, etc... typically have nodes for our ego-

\ motion, map, and calibration
® parameters.
‘ © 2021 Skydio 18
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https://www.cs.cmu.edu/~kaess/pub/Dellaert17fnt.pdf
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e * A form of Structure from Motion (SFM).

3D-Model', " . _ Ci : :

o z=7(T7®Puw;) o Leverage projective geometry to
recover 3D landmarks and poses from
2D feature associations.

* Highly scalable and can be quite
accurate.

corresponding
feature points

* Using marginalization the compute cost
can be bounded.

Image source: Theia SFM

For more details on SFM, see Richard Szeliski’s book as a jumping off point.
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https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/236658/1/RSS2013paper.pdf
http://theia-sfm.org/
http://szeliski.org/Book/
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Structure From Motion (SFM) W) visi-n
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Simultaneous
Localization and Mapping
Recover state of a vehicle or A/-\ . .
oSSBT ROV ReCOVRIAREUIRR Riapnseiasc In
ﬁct Iteo,[rlnaé) &omts ~_ Y some GTHR @ArFRIeI psRdrame.
Bundle Adjustment is a form of optimization that does these steps jointly.
-
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Outlier rejection Compute pose of camera Bundle
3 Adjustment

(Optimization)

Incoming frames

Compute feature
associations

Keyframes

Keyframes store our estimates of

-. the ego-motion.
© 2021 Skydio -
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How do we get feature associations?
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Descriptor Matching
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Examples: SIFT, KAZE, ORB, SuperPoint
’ Image Source: Georgia Tech

Examples: Optical Flow, Lucas Kanade Tracking, FlowNet

Slydio
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https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
https://www.doc.ic.ac.uk/~ajd/Publications/alcantarilla_etal_eccv2012.pdf
https://ieeexplore.ieee.org/document/6126544
https://arxiv.org/abs/1712.07629
http://www.apple.com
http://www.cs.toronto.edu/~fleet/research/Papers/flowChapter05.pdf
https://www.ri.cmu.edu/pub_files/pub3/baker_simon_2002_3/baker_simon_2002_3.pdf
https://arxiv.org/pdf/1504.06852.pdf
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A “rule of thumb” principle to consider in selecting features (axes not to scale):

KAZE

SIFT

(Vg
$ ORB
=
Z o Deep Networks are somewhat difficult to place since
'8 they offer an adjustable cost-robustness trade-off.
e
e Computational Cost

‘ © 2021 Skydio 24
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Outliers in Feature Association
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®* Qutliers: Data that does not agree with our sensor model.

* How do we deal with them?

* Let’s review a (very simple) toy problem:

State: alpha and beta

| ™\

= h(a,B)=at+ B +e;

1

Measurement

‘ © 2021 Skydio 26
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Toy Problem
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Toy Problem

45 Outlier Rejection, p(outlier) = 15%

—— True Model
---Estimated Model
x True Inliers
4071 o True Outliers e
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RANSAC (Random Sample Consensus)

Measurement (Z)
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3.01
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1.57

1.0

Outlier Rejection, p(outlier) = 15%

—— True Model
---Estimated Model
x True Inliers
True Outliers e

0.5

0.0

Time (T)
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Measurement (Z)
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Outlier Rejection, p(outlier) = 15%, Ilteration =0

r 4
True Model ,,’
 Estimated Model ,z’
True Inliers /
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Time (T)
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Measurement (Z)
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Measurement (Z)

4.5

4.0

3.5

3.0-

N
U

N
o

1.51

1.0

0.5

0.0

Outlier Rejection, p(outlier) = 15%, lteration =1

True Model

- Estimated Model

True Inliers
True Outliers

Time (T)

202
em hedd@d

N

32



Slydio

Measurement (Z)
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Measurement (Z)
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Outlier Rejection, p(outlier) = 15%, lteration = 2
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Outlier Rejection, p(outlier) = 15%
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® Pros:

* Dead simple to implement: Draw K examples, solve, count, repeat.
* Easily wrap around an existing method.
* Trivially parallelized. Have more CPU time? Sample more.
* Cons:
* Relatively weak guarantees.

®* Can require a lot of iterations for high outlier fractions or models with a large K.

* Hyper-parameters need tuning.

... but, still quite useful in practice.
1
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# Iterations vs. Outlier Fraction
/50
600
450
300
150
0
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Compute feature
< I Keyframes
associations
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Bundle
Compute pose of camera | ,
3 Adjustment

(Optimization)

Incoming frames

Typical algorithms:
Compute feature o Pnp

associations ® Essential Matrix

® Homography

© 2021 Skydio 0
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li+1 li+3 s ar—1
® ® ®
I Ik y2 | P,
® ® ®

w
Xi+N-1 Xi+N
. Position, orientation . Landmarks

’ . Camera calibrations <> Bundle of rays
‘ © 2021 Skydio 2
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* How do we actually recover the states, given the measurements and our model?

Camera poses, landmark
positions, calibration
21 h (X, m, K) + €, parameters.
29 ho (X, m, K) + €,, l

. %X.m, R

2 h; (X, m, k) + €,

<N hN (Xa m, K:) - €zn_ \

T \ We need to fill in this box.

Feature tracks form a Measurement model is given by the
‘sensor’ measurement. projective geometry of the problem.

‘ © 2021 Skydio 42
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* We can use a technique called Nonlinear Least Squares to do this.

* There are many ways to formulate SLAM problems generally, and we cannot review
them all in the time allotted.

* However, this method is widely applicable, typically fast, and is straightforward to
implement.

®* For a much more comprehensive review, | highly recommend: State Estimation for
Robotics, Tim Barfoot, 2015 (Free online)

‘ © 2021 Skydio 43
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* We will convert our measurement models into a system of equations.

* Prior to that, we will make an additional assumption - that the measurement noise is
drawn from a zero-mean gaussian.

e, XN (p=0,%,)

® We will also assume we have an initial guess for our states. In a time recursive system,
this could come from the previous frame.

‘ © 2021 Skydio 44
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We re-write our measurements as a residual functions:

sz:h( 7137K)_|_€Zzg - zy—h( lij)_Z’ij
AN

The i’th camera pose, observing the j'th landmark.

And concatenate these into a large vector:

f(x",L,K)=|fitmjin |f (x*, 1, K) ||2— E ,E :||fzj||z:
_f’i-l-M,j-i-N_ We take the squared Mahalanobis norm,
weighting by our assumed measurement
’ uncertainty

‘ © 2021 Skydio 45

Slydio


https://en.wikipedia.org/wiki/Mahalanobis_distance

2021

- NNV embedded
Nonlinear Least Squares VISI .
summit
Our ‘best estimate’ will occur when the objective function is minimized:
y = (x¥,1, K)
y = argmin||f (y) ||
y
Because f is usually going to be non-linear for most SLAM problems,
we end up linearizing the problem and taking a series of steps.
Yik+1 = Yk + OUk
: 2
OYr, = ATg Iin £ (yr) + Joyll5;
Y
\ Jacobian J is the linearization of f about

’ our initial guess.
‘ © 2021 Skydio 46
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The solution at each iteration:

Syr = (ITS713) T ITSE (vi)

_— S

First order approximation of the Hessian. Inversion

has complexity O(|y|3) ach residual is weighted by its inverse uncertainty

When linearized about the converged solution, the inverted Hessian doubles as a first order
approximation of the marginal covariance of our estimate: *

Sy~ (ITS713)

’ * See Barfoot, Chapters 3 and 4.
‘ © 2021 Skydio 47
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Binary
Factor
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* |n the linearized form, the problem is ‘easy’ to solve.

* Reduces to iterated application of weighted least squares.
* Generally, cost of solving for updates is cubic in the number of states:

* However, in some problems (like BA) there is sparsity we can leverage to improve
this.

* Huge number of problems can be cast this way (given an initial guess).
®* Canrun in a fixed memory footprint - suitable for embedded use case.

* With the appropriate 2 weights we can show the NLS produces an approximate estimate

of the uncertainty in our solution.

‘ © 2021 Skydio 49
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* Remember our assumptions:

* We needed an initial guess to linearize the system. If the guess is poor, the gradient
used in the optimizer will steer our solution in the wrong direction.

* Additionally, the covariance estimate we get out is only as good as the linearization
point.

* We also assumed Gaussian noise on the measurements.

* Qutliers must be removed, or they will dominate the optimization.
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* |tis worth considering the effect of linearization on our uncertainty estimate.

®* For a Gaussian variable u and non-linear vector function g, we can approximate:

ux N (/U,u, Eu) Because we linearized, the fidelity of our first-order 2
relies on this approximation.

v =g(u) /

’ See Barfoot, Chapter 2.
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http://asrl.utias.utoronto.ca/~tdb/bib/barfoot_ser17.pdf
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e Some relevant tools:

 GTSAM, open source package created by Frank Dellaert et al.

* Allows specification of problem in factor graph format, built for SLAM.

* G20

* |Includes solutions for SLAM and BA.

* Ceres Solver, produced by Google

* General non-linear least-squares optimizer.
* Python

* scipy.optimize.least squares
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https://gtsam.org/
https://www.cc.gatech.edu/~dellaert/FrankDellaert/Frank_Dellaert/Frank_Dellaert.html
https://github.com/RainerKuemmerle/g2o
http://ceres-solver.org/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html

Slydio

74

=

- o

4

BA on Real-Time Systems
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BA can operate at small and large scale.

* Small: A few image frames on a mobile phone.

* Large: Tens of thousand of images at city-scale.

Fairly straightforward to implement.

But:

®* Robust association may require expensive descriptors.

* After feature association, we must devote nontrivial compute to outlier rejection.

* Update rate limited to camera frame rate (slow).

© 2021 Skydio
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Cameras Inertial Measurement Unit

Source: MatrixVision Source: Lord MicroStrain
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Camera calibrations ® IMU, motion model
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https://www.matrix-vision.com/USB2.0-single-board-camera-mvbluefox-mlc.html
https://www.microstrain.com/inertial/3DM-GX5-10
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®* One of the most successful adaptations of vision research to the market.
* Present in smart phones, AR/VR headsets, drones, autonomous vehicles.
®* Camera and IMU are highly complementary:
* Camera:
* Low update rate, high compute cost, subject to outlier data.
* Able to relocalize accurately at large distances.
* IMU:
* High update rate, low compute cost, few outliers (maybe saturation).
®* Accurate over short intervals, but drifts over time.

* Able to recover attitude with respect to global reference frame (gravity).
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- IMU can deliver substantial value here.
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* Existing open-source implementations (not exhaustive):

* OpenMVG

* COLMAP Offline SFM and Multi-view Stereo (MVS)

* CMVS Multi-view Stereo

®* ORB-SLAM2 Real-time SLAM featuring BA optimization

®* PTAM One of the earliest functional visual-SLAM demos

* VINS-Mono VIO, runs on a mobile device

® Basalt VIO

* ROVIO VIO, example of a direct method
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https://github.com/openMVG/openMVG
https://colmap.github.io/
https://www.di.ens.fr/cmvs/
https://github.com/raulmur/ORB_SLAM2
http://www.robots.ox.ac.uk/~gk/PTAM/
https://github.com/HKUST-Aerial-Robotics/VINS-Mono
https://github.com/VladyslavUsenko/basalt-mirror
https://github.com/ethz-asl/rovio
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* Additional Reading:

* State Estimation for Robotics (Barfoot, 2015)

* Factor Graphs for Robot Perception (Dellaert and Kaess, 2017)

* Visual Odometry, (Scaramuzza and Fraundorfer, 2011)

* Probabilistic Robotics, (Thrun, Burgard, and Fox, 2005)

* GTSAM Software Library

 Questions? Feel free to reach out: gareth@skydio.com
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http://asrl.utias.utoronto.ca/~tdb/bib/barfoot_ser17.pdf
https://www.cs.cmu.edu/~kaess/pub/Dellaert17fnt.pdf
http://www.eng.auburn.edu/~troppel/courses/7970%202015A%20AdvMobRob%20sp15/literature/vis%20odom%20tutor%20part1%20.pdf
http://www.probabilistic-robotics.org/
https://gtsam.org/
mailto:gareth@skydio.com

