

Robust Object Detection Under Dataset Shifts

Dr. Partha Maji Arm Machine Learning Research Lab

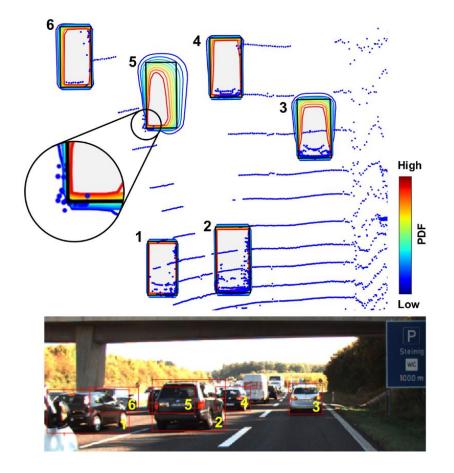
- What are the challenges with object detection (OD) in real life?
- What's wrong with the current approach?
- How do we improve robustness in OD?
- Introducing Stochastic-YOLO OD model
- How do we simulate dataset shift and validate it?
- Key takeaways and guidelines

Challenges with Object Detection (OD) in Real Life

- In real-life predicting bounding-boxes accurately are difficult due to dataset shift – occlusions, lighting condition, camera imperfections etc.
- In OD tasks "spatial quality" is very important in addition to "label quality"

Figure: 1

arm



Challenges with Object Detection (OD) in Real Life

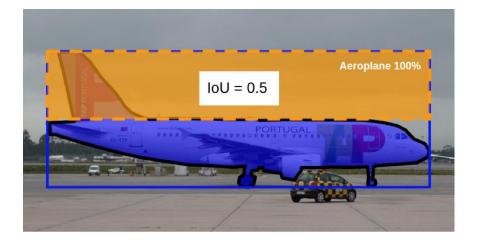
- IoU metric could often be misrepresenting

 it does capture what very well but not
 where
- In widely used model such as YOLO often score very low in spatial quality
- pPDQ probabilistic detection quality is a new metric that captures both what(Q_L) and where(Q_S) – proposed by David Hall et al.

$$pPDQ(\mathcal{G}_i^f, \mathcal{D}_j^f) = \sqrt{Q_S(\mathcal{G}_i^f, \mathcal{D}_j^f) \cdot Q_L(\mathcal{G}_i^f, \mathcal{D}_j^f)}$$

arm

Example of a poor prediction that uses **IoU** score



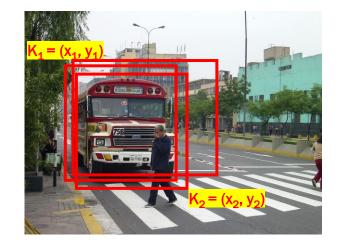
Source: Hall et al., Probabilistic Object Detection: Definition and Evaluation, WACV 2020

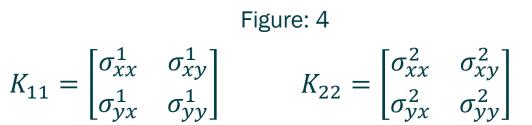
© 2021 Arm Machine Learning Research Lab

ember

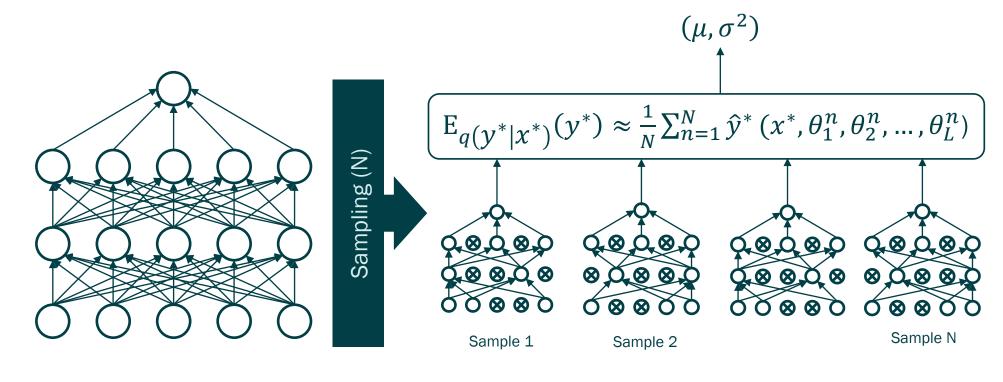
How Do We Improve Robustness in OD Task?

- We need a way to capture ambiguity in bounding box predictions
- One option is to use multiple OD models to draw a number of proposals (e.g. Deep Ensemble)
- Is there a way to do it efficiently on hardware?
- We used Monte Carlo Dropout during inference to draw multiple proposals





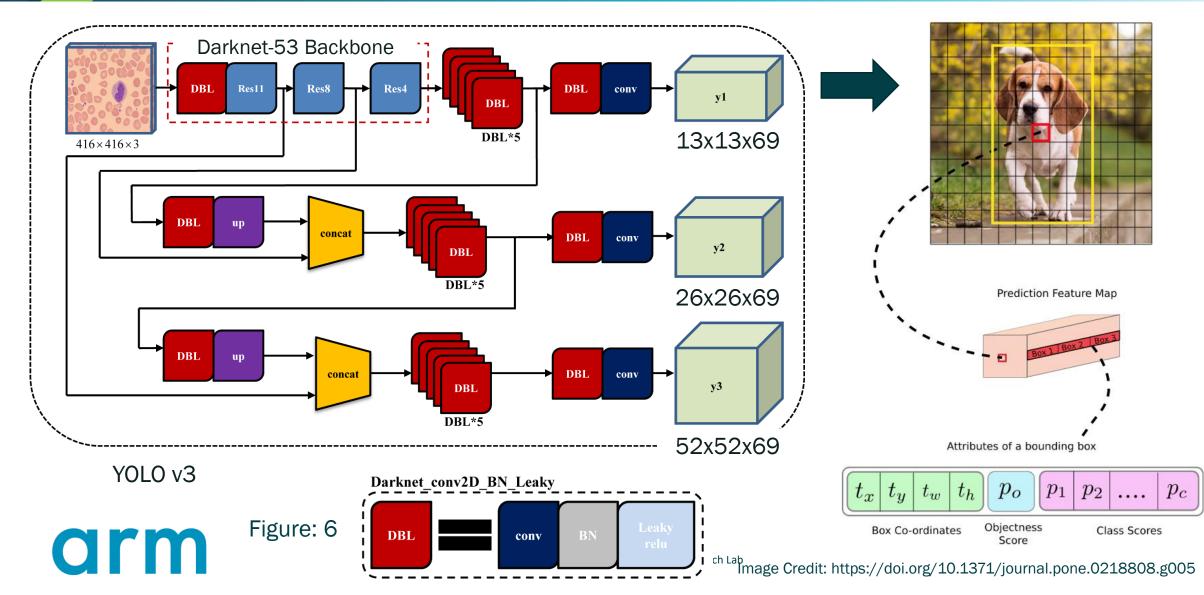
ember



Super Model

Monte-Carlo Averaging

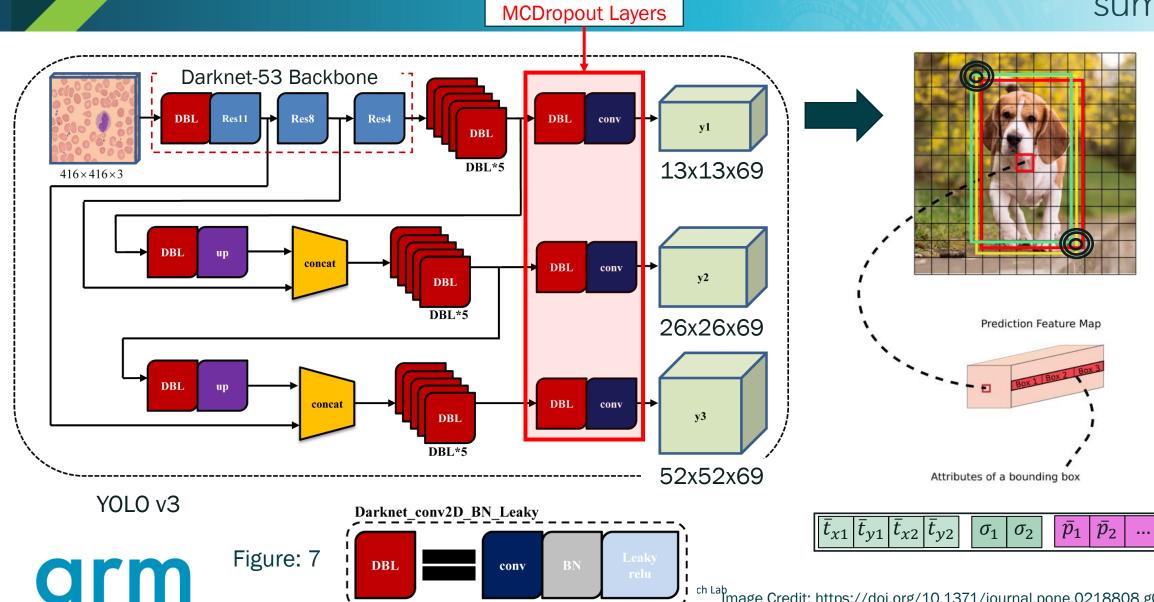
Incorporation of Monte Carlo Dropout Layer in YOLOv3



7

хΒ

Incorporation of Monte Carlo Dropout Layer in YOLOv3



^{ch Lab} Image Credit: https://doi.org/10.1371/journal.pone.0218808.g005

embed

Summu

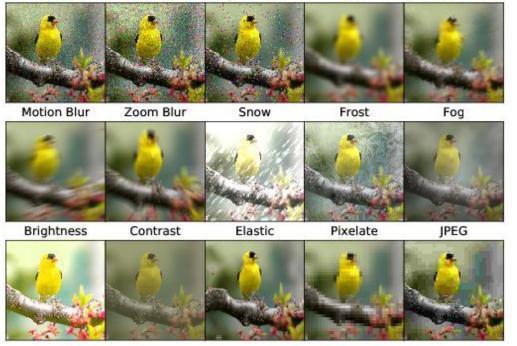
 \bar{p}_c

8

Validating on Corrupted Input Scene – Dataset Creation

- How do we model dataset shift?
- Training Dataset Not changed
- Validation Dataset Corrupted dataset
- 15 corruptions on 5 severity levels
- We validated this on CIFAR-10-C, COCO-C

Gaussian Noise Shot Noise Impulse Noise Defocus Blur Frosted Glass Blur



Download from: https://github.com/hendrycks/robustness

arm

© 2021 Arm Machine Learning Research Lab

Improved Prediction Quality of YOLOv3

BBOX Spatial Quality

	PDQ (%)	rPC _{PDQ} (%)	Sp (%)	rPC _{Sp} (%)
Baseline (0.1)	7.19	4.88	14.53	12.18
Baseline (0.5)	9.26	5.4	18.42	16.11
MCD-25 (0.1)	17.73	13.4	37.27	34.84
MCD-25 (0.5)	20.27	12.46	45.78	44.95
Ensemble (0.1)	18.53	13.35	39.9	38.53
Ensemble (0.5)	18.86	11.0	49.97	49.82

PDQ (%): Probabilistic Detection Quality Sp (%): Spatial Detection Quality

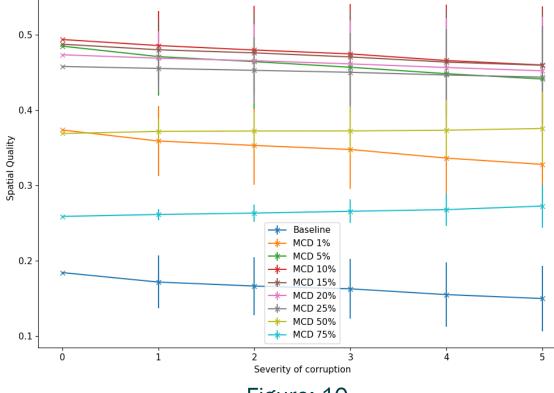


Figure: 10

Figure: 9

arm

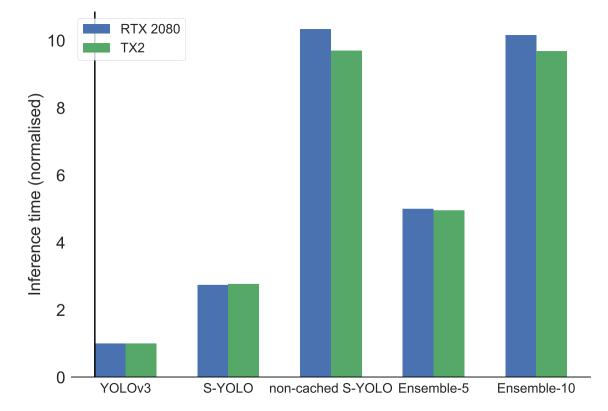
Performance Impact of Adding MC-Dropout

2021 embedded VISI n summit

- Inference time increases by 2x
 - Require intermediate activation caching
 - Better than costly ensemble baseline
 - Model Size does not change
- Trade-off between robustness and performance is possible

arm

- Apply MCDropout towards the end
- Choose different dropout rate per layer



Key Takeaways

- **Spatial quality** of bounding boxes are very important in Object Detection tasks
- Current quality metric **IoU** does not capture the spatial quality very well
- **PDQ** is a new emerging metric that captures both label and spatial quality
- To capture ambiguity in the bounding box prediction **stochasticity** is required
- Monte Carlo Dropout is a simple and elegant way to capture this uncertainty
- **Stochastic-YOLO** is an example model that shows how to use this technique to improve robustness in object detection tasks

Stochastic-YOLO

NeurIPS Paper:

https://ml4ad.github.io/#papers

Code:

https://github.com/tjiagoM/stochastic-YOLO/

Other Probabilistic Models:

https://www.arm.com/resources/research/ml

arm