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 What are the challenges with object detection (OD) in real life?
 What’s wrong with the current approach?

* How do we improve robustness in OD?

* Introducing Stochastic-YOLO OD model

* How do we simulate dataset shift and validate it?

* Key takeaways and guidelines
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* In real-life predicting bounding-boxes
accurately are difficult due to dataset
shift — occlusions, lighting condition,
camera imperfections etc.

* In OD tasks “spatial quality” is very
important in addition to “label quality”
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* loU metric could often be misrepresenting Example of a poor prediction that uses loU score
— it does capture what very well but not
where

Aeroplane 100%

* In widely used model such as YOLO often
score very low in spatial quality

 pPDQ - probabilistic detection quality is a
new metric that captures both what(Q,)
and where(Q) — proposed by David Hall Figure: 3
et al.

Source: Hall et al., Probabilistic Object Detection:
Definition and Evaluation, WACV 2020

pPDQ(G!, D) = 1/Qs(6!,D]) - Qr(6!, DY)
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* We need a way to capture ambiguity
in bounding box predictions
* One option is to use multiple OD
models to draw a number of
proposals (e.g. Deep Ensemble)
* |Isthere a way to do it efficiently on
hardware?
* We used Monte Carlo Dropout
during inference to draw multiple K. = Oxx  Oxy Koo — O%x  Ogy
proposals o Oyx  Oyy * Oyx  Oyy
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Incorporation of Monte Carlo Dropout La embedded

MCDropout Layers
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e How do we model dataset shift?

* Training Dataset — Not changed

e Validation Dataset — Corrupted
dataset

e 15 corruptions on 5 severity levels

 We validated this on CIFAR-10-C,
COCO-C

Clean Severity = 1

Severity = 5

e
o e

Download from:
https://github.com/hendrycks/robustness
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BBOX Spatial Quality
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Performance Impact of Adding MC-Dropout

* Inference time increases by 2x

* Require intermediate activation caching = RTX 2080

10 e Tx2
* Better than costly ensemble baseline
* Model Size does not change

 Trade-off between robustness and
performance is possible

Inference time (normalised)

* Apply MCDropout towards the end

e Choose different dropout rate per layer

YOLOv3 S-YOLO non-cached S-YOLO Ensemble-5 Ensemble-10

Figure: 11
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* Spatial quality of bounding boxes are very important in Object Detection tasks
e Current quality metric loU does not capture the spatial quality very well

* PDQis a new emerging metric that captures both label and spatial quality

e To capture ambiguity in the bounding box prediction stochasticity is required

* Monte Carlo Dropout is a simple and elegant way to capture this uncertainty

* Stochastic-YOLO is an example model that shows how to use this technique to
improve robustness in object detection tasks
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More Resources:

Stochastic-YOLO

NeurlPS Paper:
https://ml4ad.github.io/#papers

Code:

https://github.com/tjiagoM/stochastic-YOLO/

Other Probabilistic Models:

https://www.arm.com/resources/research/ml
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