
© 2021 The Khronos Group Inc.

Khronos Standards:
Powering the Future of
Embedded Vision
Neil Trevett, Khronos President
NVIDIA VP Developer Ecosystems

© 2021 The Khronos Group Inc.

Open, royalty-free interoperability

standards to harness the power of

GPU, multiprocessor and XR hardware

3D graphics, augmented and virtual

reality, parallel programming,

inferencing and vision acceleration

Non-profit, member-driven standards

organization, open to any company

Well-defined multi-company

governance and IP Framework

Founded in 2000
>150 Members ~ 40% US, 30% Europe, 30% Asia

Khronos Connects Software to Silicon

© 2021 The Khronos Group Inc.

Khronos Active Initiatives

3D Graphics
Desktop, Mobile

and Web

3D Assets
Authoring

and Delivery

Portable XR
Augmented and

Virtual Reality

Parallel Computation
Vision, Inferencing,

Machine Learning

Safety Critical APIs

© 2021 The Khronos Group Inc.

Khronos Compute Acceleration Standards

GPU

GPU rendering +

compute

acceleration

Heterogeneous

compute

acceleration

Single source C++ programming

with compute acceleration

Graph-based vision and

inferencing acceleration

Intermediate

Representation

(IR) supporting

parallel execution

and graphics

Higher-level

Languages and APIs
Streamlined development

and performance portability

GPU

FPGA DSP

Custom Hardware

GPUCPUCPUCPU

AI/Tensor HW
Increasing industry interest in

parallel compute acceleration to

combat the ‘End of Moore’s Law’

SYCL and SPIR were

originally OpenCL projects

Lower-level

Languages and APIs
Direct Hardware Control

© 2021 The Khronos Group Inc.

OpenCL – Low-level Parallel Programing

Complements GPU-only APIs
Simpler programming model

Relatively lightweight run-time

More language flexibility, e.g., pointers

Rigorously defined numeric precision

OpenCL

Kernel

Code
OpenCL

Kernel

Code
OpenCL

Kernel

Code
OpenCL C

Kernel

Code

GPU

DSP
CPU

CPU
FPGA

OpenCL

Devices

Host

CPU

NN HW

Runtime OpenCL API to

compile, load and execute

kernels across devices

Programming and Runtime Framework

for Application Acceleration
Offload compute-intensive kernels onto parallel

heterogeneous processors

CPUs, GPUs, DSPs, FPGAs, Tensor Processors

OpenCL C or C++ kernel languages

Platform Layer API
Query, select and initialize compute devices

Runtime API
Build and execute kernels programs on multiple devices

Explicit Application Control
Which programs execute on what device

Where data is stored in memories in the system

When programs are run, and what operations are

dependent on earlier operations

© 2021 The Khronos Group Inc.

OpenCL Open-Source Project Momentum

Tripling in the last four years

© 2021 The Khronos Group Inc.

OpenCL is Widely Deployed and Used

Accelerated Implementations

Modo

Desktop Creative Apps

Math and Physics

Libraries

Vision, Imaging

and Video Libraries

The industry’s most pervasive, cross-vendor, open standard for

low-level heterogeneous parallel programming

Arm Compute Library

SYCL-DNN

Machine Learning

Libraries and Frameworks

TI DL Library (TIDL)

VeriSilicon

XiaomiclDNN
Intel

Intel

Synopsis

MetaWare EV

NNAPI

https://en.wikipedia.org/wiki/List_of_OpenCL_applications

Vegas Pro

ForceBalance

Molecular Modelling Libraries

Machine Learning

Compilers

Parallel

Languages

CLBlast

SYCL-BLAS

Linear Algebra

and FFT Libraries

VkFFT

http://www.google.com/imgres?imgurl=http://www.evafedoramx.org/wp-content/uploads/2012/09/Logo-Gimp.png&imgrefurl=http://www.evafedoramx.org/2011/10/22/alternativas-libres-a-herramientas-privativas/&docid=lw631MBGbbWMKM&tbnid=gWQaxmY2sehNfM&w=500&h=500&ei=2DFjUdGOIOGEyAHsoYGYDw&ved=0CAMQxiAwAQ&iact=ricl
https://en.wikipedia.org/wiki/List_of_OpenCL_applications

© 2021 The Khronos Group Inc.

ML Compiler Steps

1.Import Trained

Network Description

2. Graph-level optimizations

e.g., node fusion, node

lowering and memory tiling

3. Decompose to primitive

instructions and emit programs

for accelerated run-times

Consistent Steps

Fast progress but still area of intense research
If compiler optimizations are effective - hardware accelerator APIs can stay ‘simple’ and

won’t need complex metacommands (e.g., combined primitive commands like DirectML)

Embedded NN Compilers
CEVA Deep Neural Network (CDNN)

Cadence Xtensa Neural Network Compiler (XNNC)

© 2021 The Khronos Group Inc.

OpenCL 3.0

OpenCL C:

- kernels,

- address spaces,

- special types,

...

Most of C++17:

- inheritance,

- templates,

- type deduction,

...

C++ for OpenCL

Increased Ecosystem Flexibility
All functionality beyond OpenCL 1.2 queryable plus

macros for optional OpenCL C language features

New extensions that become widely adopted will be
integrated into new OpenCL core specifications

OpenCL C++ for OpenCL
Open-source C++ for OpenCL front end compiler

combines OpenCL C and C++17 replacing

OpenCL C++ language specification

Unified Specification
All versions of OpenCL in one specification for easier

maintenance, evolution and accessibility

Source on Khronos GitHub for community feedback,

functionality requests and bug fixes

Moving Applications to OpenCL 3.0
OpenCL 1.2 applications – no change

OpenCL 2.X applications - no code changes if all used

functionality is present

Queries recommended for future portability

C++ for OpenCL
Supported by Clang and uses the LLVM

compiler infrastructure

OpenCL C code is valid and fully compatible

Supports most C++17 features

Generates SPIR-V kernels

https://github.com/KhronosGroup/Khronosdotorg/blob/master/api/opencl/assets/CXX_for_OpenCL.pdf
https://github.com/KhronosGroup/OpenCL-Docs

© 2021 The Khronos Group Inc.

OpenCL 3.0 Adoption

OpenCL 3.0

Adopters

OpenCL 3.0

Adopters Already

Shipping

Conformant

Implementations

Product Conformance Status
https://www.khronos.org/conformance/adopters/conformant-products/opencl

https://www.khronos.org/conformance/adopters/conformant-products/opencl

© 2021 The Khronos Group Inc.

Asynchronous DMA Extensions

OpenCL embraces a new class of Embedded Processors
Many DSP-like devices have Direct Memory Access hardware

Transfer data between global and local memories via DMA transactions
Transactions run asynchronously in parallel to device compute enabling wait for transactions to complete

Multiple transactions can be queued to run concurrently or in order via fences

OpenCL abstracts DMA capabilities via extended asynchronous workgroup copy built-ins
(New!) 2- and 3-dimensional async workgroup copy extensions support complex memory transfers

(New!) async workgroup fence built-in controls execution order of dependent transactions

New extensions complement the existing 1-dimensional async workgroup copy built-ins

Async Fence controls order of dependent transactions

All transactions prior to async_fence must complete

before any new transaction starts, without a

synchronous wait

async_copy1

async_copy2

async_fence

async_copy3

Async 3D-3D Copy Transaction

Copy

Transaction

Reshaping possible

Vglobal = Vlocal

Volume

global

Volume

local

The first of significant upcoming advances in OpenCL to

enhance support for embedded processors

© 2021 The Khronos Group Inc.

Layered OpenCL Implementations

DX12

Runtime

Clang+LLVM+

SPIR-V LLVM

OpenCL C or

C++ for OpenCL

Kernel Sources

OpenCL

Application

Host Code

CLOn12 Run-time

API Translator

Mesa SPIR-V

to DXIL

DXIL

OpenCLon12
OpenCL over DX12

https://github.com/microsoft/OpenCLOn12

Translates through

MESA’s NIR Intermediate

Representation

OpenCL

SPIR-VClang+Clspv

Compiler

OpenCL C or

C++ for OpenCL

Kernel Sources

Vulkan

Runtime

OpenCL

Application

Host Code

Clvk run-time

API Translator

Vulkan

SPIR-V

clspv + clvk
OpenCL over Vulkan

https://github.com/google/clspv

https://github.com/kpet/clvk

OpenCLOn12
Microsoft and COLLABORA

GPU-accelerated OpenCL on any DX12 PC and

Cloud instance (x86 or Arm)

Leverages Clang/LLVM AND MESA

OpenGLOn12 – OpenGL 3.3 over DX12 is

already conformant

clspv + clvk
clspv - Google’s open-source OpenCL kernel to

Vulkan SPIR-V compiler

Tracks top-of-tree LLVM and Clang - not a fork

Clvk – prototype open-source OpenCL to Vulkan

run-time API translator

Used by shipping apps and engines on Android

e.g., Adobe Premiere Rush video editor – 200K lines of

OpenCL C kernel code

DXIL

https://github.com/microsoft/OpenCLOn12
https://github.com/google/clspv
https://github.com/kpet/clvk

© 2021 The Khronos Group Inc.

SPIR-V Language Ecosystem

OpenCL C

C++ for OpenCL

clspv

triSYCL

Intel DPC++

Codeplay

ComputeCpp

LLVM

Clang

SYCL

SPIR-V LLVM

IR Translator

Khronos Open Source

3rd Party Open Source

Language Definitions

Closed Source

OpenCLon12
Inc. Mesa SPIR-V

to DXIL

SPIRV-Cross

GLSL

HLSL

Metal

Shading

Language
glslangGLSL

HLSL DXC

DXILSPIR-V Tools
(Dis)Assembler

Validator

Optimize/Remap

Fuzzer

Reducer

OpenCL C
Online

Compilation

IREE

SPIR-V enables a rich ecosystem of languages and compilers to

target low-level APIs such as Vulkan and OpenCL, including

deployment flexibility: e.g., running OpenCL kernels on Vulkan

Support for SPIR-V

Environment Specs

OpenCL

Vulkan

C++ for OpenCL
(using

cl_ext_cxx_for_opencl)

© 2021 The Khronos Group Inc.

SYCL Single Source C++ Parallel Programming

GPU

FPGA DSP

Custom Hardware

GPUCPUCPUCPU

Standard C++

Application

Code

C++

Libraries

ML

Frameworks

C++ Template

Libraries

C++ Template

Libraries

C++ Template

Libraries

SYCL

Compiler

CPU

Compiler

CPU

One-MKL

One-DNN

OneDPC

SYCL-BLAS

SYCL-Eigen

SYCL-DNN

SYCL Parallel STL

...
C++ templates and lambda

functions separate host &

accelerated device code

Accelerated code

passed into device

OpenCL compilers

Complex ML frameworks

can be directly compiled

and accelerated

SYCL is ideal for accelerating larger

C++-based engines and applications

with performance portability

C++ Kernel Fusion can

give better performance

on complex apps and libs

than hand-coding

AI/Tensor HW

GPU

FPGA DSP

Custom Hardware

GPUCPUCPUCPU

AI/Tensor HW

Other

Backends

© 2021 The Khronos Group Inc.

Expressiveness and simplicity for heterogeneous programming in modern C++
Closer alignment and integration with ISO C++ to simplify porting of standard C++ applications

Improved programmability, smaller code size, faster performance

Based on C++17, backwards compatible with SYCL 1.2.1

Backend acceleration API independent

New Features
Unified Shared Memory | Parallel Reductions | Subgroup Operations | Class template Argument Deduction

Significant SYCL adoption in Embedded, Desktop and HPC Markets

SYCL 2020 Launched February 2021

© 2021 The Khronos Group Inc.

SYCL Implementations in Development

Multiple Backends in Development
SYCL beginning to be supported on multiple

low-level APIs in addition to OpenCL

e.g., ROCm and CUDA

For more information: http://sycl.tech

Source Code

DPC++
Uses LLVM/Clang

Part of oneAPI

ComputeCpp
Multiple

Backends

triSYCL
Open source

test bed

hipSYCL
CUDA and

HIP/ROCm

Any CPU

OpenCL +

SPIR-V

Any CPU

OpenCL +

SPIR(-V)

OpenCL+PTX

Intel CPUs

Intel GPUs

Intel FPGAs

Intel CPUs

Intel GPUs

Intel FPGAs

AMD GPUs
(depends on driver stack)

Arm Mali

IMG PowerVR
Renesas R-Car

NVIDIA GPUs

OpenMP

OpenCL +

SPIR/LLVM

XILINX FPGAs

POCL
(open-source OpenCL

supporting CPUs and NVIDIA

GPUs and more)

Any CPU

E
x
p
e
rim

e
n
ta

l OpenMP

ROCm

CUDA

AMD GPUs

NVIDIA GPUsAny CPU

CUDA+PTX

NVIDIA GPUs

SYCL enables Khronos to

influence ISO C++ to (eventually)

support heterogeneous compute

SYCL, OpenCL and SPIR-V, as open industry

standards, enable flexible integration and

deployment of multiple acceleration technologies

VEO

Intel CPUs

NEC VEs

neoSYCL
SX-AURORA

TSUBASA

http://sycl.tech/

© 2021 The Khronos Group Inc.

The Origin of OpenVX

Engines and

Applications

GPU

3D Graphics API

Driver

HW CPU

DSPGPU

Vision API

Driver

Engines and

ApplicationsDriver Model

An open API standard

enables multiple silicon

vendors to ship drivers

with their silicon

Silicon vendors can

aggressively optimize

drivers for their own

silicon architecture

OpenVX is the industry’s

only API standard enabling

portable access to vendor-

optimized vision drivers

High-level Abstraction

3D graphics is always

accelerated by a GPU – so a

low-level GPU-centric API

still provides cross-vendor

portability

Vision processing can be

accelerated by a wide

variety of hardware

architectures

OpenVX needs a higher-

level graph abstraction to

enable optimized cross-

vendor drivers

Vision
Node

Vision
Node

Vision
NodeVision

Node

Vision Processing Graph

© 2021 The Khronos Group Inc.

OpenVX Cross-Vendor Vision and Inferencing

High-level graph-based abstraction for portable, efficient vision processing
Optimized OpenVX drivers created, optimized and shipped by processor vendors

Implementable on almost any hardware or processor with performance portability

Graph can contain vision processing and NN nodes for global optimization

Run-time graph execution need very little host CPU interaction

Vision
Node

Vision
Node

Vision
Node

Downstream

Application

Processing

Native

Camera

Control CNN Nodes

NNEF Import converts a trained Neural

Network into OpenVX Graph
Layers are represented as OpenVX nodes

OpenVX Graph

Open

Source

Convertors
https://github.com/KhronosGroup/NNEF-Tools

Stable Specification

Open-Source

Projects
Vendors optimize and ship drivers

for their platform
Full list of conformant OpenVX implementations here:

https://www.khronos.org/conformance/adopters/conformant-products/openvx

https://github.com/KhronosGroup/NNEF-Tools
https://www.khronos.org/conformance/adopters/conformant-products/openvx

© 2021 The Khronos Group Inc.

OpenVX Efficiency through Graphs..

Reuse

pre-allocated

memory for

multiple

intermediate data

Memory

Management

Less allocation overhead,

more memory for

other applications

Replace a sub-

graph with a single

faster node

Kernel

Fusion

Better memory

locality, less kernel

launch overhead

Split graph

execution across

the whole system:

CPU / GPU /

dedicated HW

Graph

Scheduling

Faster execution

or lower power

consumption

Execute a sub-

graph at tile

granularity instead

of image

granularity

Data

Tiling

Better use of

data cache and

local memory

Performance comparable to hand-optimized, non-portable code
Real, complex applications on real-world hardware

Much lower development effort and higher portability than hand-optimized code

© 2021 The Khronos Group Inc.

OpenVX 1.3 and Extensibility

OpenCL Command Queue

Application

cl_mem buffers

Fully asynchronous host-device

operations during data exchange

OpenVX data objects

Runtime
Runtime Map or copy OpenVX data objects

into cl_mem buffers

Copy or export

cl_mem buffers into OpenVX data

objects

OpenVX user-kernels can access command

queue and cl_mem objects to asynchronously

schedule OpenCL kernel execution

OpenVX/OpenCL

Interop

OpenVX 1.3 core specification defines market-targeted feature sets
Baseline Graph Infrastructure (enables other Feature Sets)

Default Vision Functions

Enhanced Vision Functions

Neural Network Inferencing (including tensor objects)

NNEF Kernel import (including tensor objects)

Binary Images

Safety Critical (reduced features and graph import for easier safety certification)

OpenVX is Extensible
Fully accelerated custom nodes can be integrated into the OpenVX graph with OpenCL interop

© 2021 The Khronos Group Inc.

Open Source OpenVX & Samples

Open Source OpenVX Tutorial and Code Samples
https://github.com/rgiduthuri/openvx_tutorial

https://github.com/KhronosGroup/openvx-samples

Fully Conformant

Open Source OpenVX 1.3

for Raspberry Pi
Raspberry Pi 3 and 4 Model B with Raspbian OS

Memory access optimization via tiling/chaining

Highly optimized kernels on multimedia instruction set

Automatic parallelization for multicore CPUs and GPUs

Automatic merging of common kernel sequences

Check out the OpenVX 1.3 Session

here at Embedded Vision Summit for more details!

https://github.com/rgiduthuri/openvx_tutorial
https://github.com/KhronosGroup/openvx-samples
https://github.com/KhronosGroup/OpenVX-sample-impl/tree/openvx_1.3

© 2021 The Khronos Group Inc.

Sensor Data

Training Data

Trained

Networks

Neural Network

Training

C++ Application

Code

APIs for Embedded Compute

Compilation Ingestion

FPGA

DSP
Dedicated

Hardware

GPU

Vision / Inferencing

Engine
Compiled

Code

Hardware Acceleration APIs

Diverse Embedded Hardware
Multi-core CPUs, GPUs

DSPs, FPGAs, Tensor Cores
* Vulkan only runs on GPUs

Applications link to compiled

inferencing code or call

vision/inferencing API

Networks trained on high-end

desktop and cloud systems

Open industry standards, enable

flexible integration and deployment

of multiple acceleration technologies

© 2021 The Khronos Group Inc.

Need for Embedded Camera API Standards

Increasing Sensor Diversity
Including camera arrays and

depth sensors such as Lidar

Sophisticated Sensor Processing
Including inferencing. Sensor streams need to

be efficiently generated and fed into

acceleration APIs and processors

Multiple Sensors Per System
Synchronization and coordination

become essential

Proprietary Interfaces
Vendor-specific APIs to control

cameras, sensors and

close-to-sensor ISPs

Cost and time to integrate and utilize

sensors in embedded systems is a major

constraint on innovation and efficiency in

the embedded vision market

© 2021 The Khronos Group Inc.

Benefits of Embedded Camera API Standard

Embedded System

Camera

Sensor and

ISP

Vision and

Inferencing

Acceleration

Sensor

Stream

Application controlling sensor stream

generation and processing in real time

Choice of

multiple open

standard, cross-

vendor APIs

No widely

adopted, open

standard, cross-

vendor APIs

An effective open, cross-vendor open

standard for camera, sensor and ISP

control could provide multiple benefits

Cross-vendor portability of camera/sensor code

for easier system integration of new sensors

Preservation of application code across

multiple generations of cameras and sensors

Sophisticated control over sensor stream

generation increases effectiveness of

downstream accelerated processing

Development of Camera and sensor APIs may also generate new

requirements for downstream vision and inferencing acceleration APIs

© 2021 The Khronos Group Inc.

Embedded Camera API Exploratory Group

Embedded Camera API

Exploratory Group

Hosted by EMVA and Khronos

Online discussion forum and weekly Zoom

calls, probably for a few months

Discuss industry requirements

for open, royalty-free camera API(s)

No detailed design activity

to protect participants IP

Explore if consensus can be built around an

agreed Scope of Work document

Discuss what standardization activities can

best execute actions in the Scope of Work

Any company is

welcome to join

No cost or IP

Licensing obligations

Project NDA to cover

Exploratory Group

Discussions

Scope of

Work

Document

Agreed SOW

document released

from NDA and

made public

Agreement with

standardization bodies

and/or open source

projects on

initiative(s) to

execute the SOW

under proven

processes and IP

Frameworks

Proven Khronos Process to ensuring

industry requirements are fully

understood before starting

standardization initiatives

Join and
get involved!

https://www.khronos.org/embedded-camera/#getinvolved

© 2021 The Khronos Group Inc.

Khronos for Global Industry Collaboration

Khronos membership is open

to any company

Influence the design and direction

of key open standards that will

drive your business

Accelerate time-to-market with

early access to specification drafts

Provide industry thought

leadership and gain insights into

industry trends and directions

Benefit from Adopter discounts

www.khronos.org/members/

www.khronos.org

http://www.khronos.org/members/
http://www.khronos.org/

