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Problem Definition
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Despite increasing interest in Quantization Aware Training (QAT),

most training is still done in 32-bit floating point.

For deployment, maximum efficiency is preferable:

• low bandwidth

• high compute density

Many NNA designs support low bit depth inference for this reason.

This presentation describes methods for converting 32-bit floating point networks to low bit depths which:

• use minimal amounts of unlabelled data

• maintain high fidelity to the original network even at low bit depths.

• low power

• low area
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Training for Low-Precision Inference
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Number formats can be represented by one or more quantization parameters. We want formats with as few bits as 
possible without damaging accuracy.

For example, a shared exponent and number of bits can be given for every tensor or channel.

The standard way to do this in QAT is to insert “fake” quantization nodes that match the target hardware.

After quantisation:Before quantisation:
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Training for Low-Precision Inference
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Quantisation node q:

Our fake quantisation nodes are designed so that we can backpropagate gradients to the quantization parameters.

This lets us learn suitable quantization parameters during training that minimize number of bits while maximizing accuracy.
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Training for Low-Precision Inference
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Building our fake quantization nodes out of math ops makes implementation simpler.

On the backward pass, everything is differentiable except the rounding op.

We override the gradient for the round op to a constant 1 – the “straight-through” estimator. (Hubara et al. [1] following 
earlier work by Hinton and Bengio).

[1] Binarized Neural Networks
Hubara, Courbariaux, Soudry, El-Yaniv and Bengio NIPS 2016
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Distillation
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Originally proposed by Hinton et al. [2] for transferring a learned mapping to smaller models.
The original network is used for discovering the mapping, and the smaller one uses the output as a soft target.

Step 1: Discovery Phase

[2] Distilling the Knowledge in a Neural Network

Hinton, Vinyals and Dean NIPS Deep Learning and Representation Learning Workshop (2015)
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Distillation
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Step 2: Transfer phase

[2] Distilling the Knowledge in a Neural Network

Hinton, Vinyals and Dean NIPS Deep Learning and Representation Learning Workshop (2015)

Originally proposed by Hinton et al. [2] for transferring a learned mapping to smaller models.
The original network is used for discovering the mapping, and the smaller one uses the output as a soft target.
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Distillation
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There are a couple of very interesting things to note about the 
second step:

There are no labels!

Only need input data and the original network.

It’s very general.

You can define cost functions that work for practically any 
supervised learning task mapping inputs to outputs.

We found that these properties are very useful in practice for 
preparing networks for low-precision inference.
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Putting Everything Together
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Distillation can be used to train the quantization 
parameters of our quantized network.

Gradients can be backpropagated to the number of 
bits and exponent, and used for training in a DL 
framework (e.g. PyTorch).

I’ve only shown one pair in the diagram for simplicity, 
but we train all the number formats simultaneously.
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Universal Cost Function
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accuracy compression

𝜸

Instead of using a problem-specific loss function, we use a universal 
one.

The loss function we minimise is:

𝑓 𝑥 − 𝑓𝑞(𝑥) + 𝛾𝐵

𝑓 𝑥 − 𝑓𝑞(𝑥) is the distillation loss: the difference between the 
output of the original and the quantised network.

We use an L1 norm – this works well for everything from image 
classification to style transfer!

𝐵 is the average number of bits in the network.

𝛾 is used to balance between compression and accuracy. This is a 
hyperparameter that needs to be set by the user.

Some care needs to be taken with the learning rate during training.
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Universal Cost Function
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𝒇 𝒙 − 𝒇𝒒(𝒙) 𝑩

𝜸
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We use an L1 norm – this works well for everything from image 
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𝐵 is the average number of bits in the network.

𝛾 is used to balance between compression and accuracy. This is a 
hyperparameter that needs to be set by the user.

Some care needs to be taken with the learning rate during training.
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Dataset Security
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Data would ordinarily need to be shared with a third party performing model compression.

Our proposed distillation-based compression scheme means that large datasets (and in particular labels) need 
not be shared.

COMPLIANCE RISK

Many jurisdictions have laws restricting the 
collection and sharing of personal data.

Datasets containing personal data may have to be 
anonymized before they can be shared – this can 
be costly and time-consuming.

OPERATIONAL RISK

Datasets often represent a significant investment 
by an organisation. They are a closely-guarded 
asset.

Most companies are (understandably!) protective 
of their datasets.

Labels represent a large part of the value of many 
datasets.



© 2021 Imagination Technologies

Advantages of Distillation for Low-Precision Inference
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LABEL-FREE TRAINING

Labels are valuable. Companies take a 

risk whenever they share them 

externally.

Labels may contain sensitive data. 

Distillation helps ensure privacy.

GENERALITY

Simple, reusable compression code.

The same general-purpose cost 

function can be used for a very wide 

variety of tasks.

LIMITED DATA

No need for access to large, proprietary 

datasets since we are learning very few 

parameters.

A small number of representative inputs 

is all that’s needed.

SOFT TARGETS

Easier and faster to learn formats with 

distillation loss than with the loss used 

to train the original, floating point 

network.

HIGH FIDELITY

We are training to match the original 

network, not the dataset. This results in 

a closer match to the original network.

WEIGHT FINE-TUNING

We can fine-tune weights jointly with 

learning the formats for improved 

accuracy.

However, this requires more data.



Results
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Number Format
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This method can be applied to virtually any low-precision number format.

We have tested it with QNA (for learned N, as an extension to the Q8A format) and block floating point (mantissa of specified 
bit depth with shared exponent).

• Floating point scale

• Learned zero offset

• Variable number of bits (not present in the usual Q8A format)

Choice of granularity: for example, shared formats for each tensor or channel.

The following results are for QNA with per-tensor data formats, per-tensor weight bit depths and per-channel weight 
exponents.
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ImageNet Classification
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Original After Conversion

top1 top5 top1 top5 bits/t

Mobilenet v1 70.96 89.80 70.61 89.65 7.24

Mobilenet v2 71.58 90.49 71.46 90.36 6.80

Mobilenet v3 67.55 87.38 67.13 87.24 8.43

Inception v1 69.76 89.54 69.09 89.18 6.34

Resnet v2 (50) 69.73 89.41 67.88 88.19 6.42

Weight fine tuning is done simultaneously with learning formats.
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Image Segmentation
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Original
8 bits
weighted outlier

8.72 bits (learned formats 
per tensor)

7.18 bits (learned formats 
per channel, weight 
tuning)

mIOU: 0.669 0.571 0.670 0.668

[3] Rethinking Atrous Convolution for Semantic Image Segmentation

Chen, Papandreou, Schroff and Adam               arXiv:1706.05587

Weight fine tuning is done simultaneously with learning formats.
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Style Transfer
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Source Image Original Network 8.75 bits 10 bits
weighted outlier

https://github.com/lengstrom/fast-style-transfer

[4] Perceptual Losses for Real-Time Style Transfer and Super-Resolution

Johnson, Alahi and Li               ECCV 2016

Format selection only – formats were learned based on one image!

gives an entirely 
blank output at 
10 bits using 
conventional 
method
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Conclusion
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It is possible to learn suitable number formats, trading off accuracy against compression, using standard deep learning tools.

Combined with distillation, this gives a general approach for optimised conversion of floating point neural networks using 
small amounts of unlabelled data.

Option to do weight tuning simultaneously (with a larger quantity of unlabelled data).

General cost function that works for a wide variety of tasks.

Dataset security: no need to share labels or large quantities of proprietary data with third parties.

Faithful, sub 8-bit compressed models for ImageNet classification.
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Resources
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2021 Embedded Vision Summit

“Deep Neural Networks in Automotive”  
(Expert Bar)

Gilberto Rodriguez: Director AI Product Management, 
Imagination Technologies

Andrew Grant: Senior Director of AI,
Imagination Technologies

Find out about how DNNs are changing automotive 
human-machine interfaces, implications for 
automotive safety and opportunities for 
accelerating DNNs in automotive applications.

Learn more about converting to low 
precision using distillation

https://www.imaginationtech.com/blog/low-precision-
inference-using-distillation by Szabolcs Cséfalvay
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