
© 2021 Nomitri GmbH

Deploying PyTorch
Models for Real-time
Inference On the Edge
Moritz August
CDO & Co-Founder
Nomitri

Intro

© 2021 Nomitri GmbH

• Start-Up based in Berlin, Germany
• Deep Learning vision applications for mobile/edge
• First product in retail
• From edge application over ML to backend service
• Use PyTorch and C++ library to deploy our models

About us

© 2021 Nomitri GmbH

• Imperative, simple API
• Dynamic computation graphs at its core
• Great ecosystem
• Debug with Python debugger
• Caught up with TensorFlow

Why PyTorch?

Google Trends: PyTorch (Blue) vs TensorFlow (Red)

© 2021 Nomitri GmbH

PyTorch Mobile

• Available for Android, Linux and iOS
• Provides several ready-to-use models
• Simple deployment workflows
• Support for Arm CPU and accelerators

Torchvision

• Provides many pre-trained vision architectures
• Tools for augmentation, IO and bounding boxes
• Contains models optimized for mobile/edge

PyTorch Mobile & Torchvision

© 2021 Nomitri GmbH

x86 CPU NVIDIA
GPU ARM CPU Mobile

GPU NPU/DSP

torch.nn.Module

TorchScript ONNX

torch.jit torch.onnx

LibTorch ONNX
Runtime

Python

C++

Deployment Workflows

Model Optimization

© 2021 Nomitri GmbH

Example Model: Classification

© 2021 Nomitri GmbH

Example Model: Classification

© 2021 Nomitri GmbH

Example Model: Classification

© 2021 Nomitri GmbH

• Use depthwise-separable convolutions
• Fuse operations like Conv, BatchNorm, ReLU
• Make channels divisible by 8
• Use efficient and fuseable activations like ReLU
• Use channels-last memory format

Architecture Optimization

© 2021 Nomitri GmbH

Architecture Optimization

© 2021 Nomitri GmbH

Torchvision offers utility function to adapt channel numbers

Architecture Optimization

© 2021 Nomitri GmbH

• PyTorch has built-in support for model compression
• Pruning
• Quantization

• Pruning is implemented via weight masks
• Quantization for weights and activations
• Advanced techniques have open-source implementations

Model compression

© 2021 Nomitri GmbH

• Quantization supports different modes
• Dynamic quantization
• Static quantization
• Quantization-aware training

• Has two backends for execution on x86 and Arm CPUs
• Quantization can be customized via configuration

Workflow static/post-training quantization

Quantization

Add
Stubs Train Fuse Prepare Calibrate Quantize

© 2021 Nomitri GmbH

Quantization

© 2021 Nomitri GmbH

Quantization

© 2021 Nomitri GmbH

Quantization

© 2021 Nomitri GmbH

• Performing the optimizations yields drastic
improvements

• Measurements for 8 layers with 18 to 1154 channels

Model Comparison

Deployment

© 2021 Nomitri GmbH

• Statically typed intermediate representation
• Serialize and ship to production environments
• Multiple ways to convert models to TorchScript

• Convert entire module
• Trace graph with example input
• Write in TorchScript

TorchScript

© 2021 Nomitri GmbH

TorchScript: Conversion, Tracing & Serialization

© 2021 Nomitri GmbH

TorchScript: Example output

© 2021 Nomitri GmbH

• PyTorch has C++ 14 API
• Closely follows the Python API
• Can be used by simple inclusion of torch header
• Typically used for inference only
• Simply load TorchScript models for inference

General workflow for using LibTorch

LibTorch

Define
model Train model Convert to

TorchScript

Load
TorchScript

model
Do Inference

Python C++

© 2021 Nomitri GmbH

FBGEMM CUDA QNNPACK Vulkan/
Metal NNAPI

LibTorch

x86 CPU NVIDIA GPU ARM CPU Mobile GPU NPU/DSP

Backends

© 2021 Nomitri GmbH

• Simple interface to perform graph optimizations
• Allows optimization for different backends

• XNNPACK for floating point on Arm CPU
• QNNPACK for quantized 8-bit on Arm CPU
• Vulkan for GPU on Android
• Metal for GPU on iOS

Mobile CPU and GPU

© 2021 Nomitri GmbH

• TorchScript model can be optimized to run via NNAPI
• Model should be fused and quantized beforehand
• Channels-last memory format is mandatory
• NNAPI model can be wrapped to provide float interface

Workflow NNAPI optimization

NNAPI

Quantize Remove
Stubs

Prepare
NNAPI
input

Trace Convert

© 2021 Nomitri GmbH

NNAPI

© 2021 Nomitri GmbH

• Open Neural Network Exchange (ONNX)
• Open-Source ecosystem for switching frameworks
• ONNX Runtime ML acceleration framework by Microsoft
• Supports variety of accelerators for inference and training
• PyTorch has native support for export to ONNX

ONNX

© 2021 Nomitri GmbH

• Only unquantized models can be exported to ONNX
• ONNX Runtime supports quantization

• Dynamic
• Static
• Quantization-aware training

• PyTorch dataloader can be re-used with a small wrapper

Static/post-training quantization workflow

ONNX Quantization

Define
model Train model Convert to

ONNX
Load ONNX

model
Calibrate &
Quantize

Python/PyTorch C++/ONNX Runtime

© 2021 Nomitri GmbH

ONNX Quantization

© 2021 Nomitri GmbH

• Different backends support different operations
• Safe choices for architectures are

• Convolution (including grouping)
• Add
• ReLU
• Nearest neighbor upsampling
• Adaptive average pooling
• Strictly sequential graphs

• Memory layout requirements vary

Pitfalls & Limitations

© 2021 Nomitri GmbH

• Efficient models are not enough
• Inefficient handling of camera input can cost a lot
• Some useful optimizations

• Resize frames early
• Merge float conversion and normalization
• Merge reordering and splitting of channels
• Use buffers to hold frames

C++: Efficient input pipeline

Example Use-Cases

© 2021 Nomitri GmbH

• Has images with latest PyTorch versions available
• Supports CUDA
• Can run TorchScript float models on GPU

Jetson Nano

© 2021 Nomitri GmbH

• PyTorch Mobile can be used directly in Java/Kotlin
• Recommended: native C++ library using LibTorch
• Available accelerators can be used with little overhead
• Quantized models on CPU are good fallback

Android Phone

© 2021 Nomitri GmbH

Android Phone

© 2021 Nomitri GmbH

• Yocto images include PyTorch and ONNX Runtime
• PyTorch version can only access CPU
• Execution provider for ONNX Runtime to use NPU/GPU
• Convert PyTorch models to quantized ONNX models

i.MX 8M Plus

© 2021 Nomitri GmbH

Runtime Comparison

• Classifier with full MobileNetV2 backbone
• Hardware: i.MX 8M Plus vs. Jetson Nano vs. OnePlus 6

Conclusion

© 2021 Nomitri GmbH

Summary

• PyTorch facilitates model development & prototyping
• Easy model architecture optimization
• Provides workflows for Arm CPU, GPU and NPU/DSP
• ONNX is a powerful alternative for inference
• Deployment to all popular hardware platforms

© 2021 Nomitri GmbH

● PyTorch website
● TorchVision
● PyTorch Mobile
● ONNX
● ONNX Runtime
● ONNX Runtime Quantization
● PyTorch ONNX Export
● PyTorch Quantization
● PyTorch Mobile Optimizer
● PyTorch IOS GPU Workflow
● PyTorch Android GPU Workflow
● PyTorch NNAPI Workflow
● QNNPACK blog post

Resources

Example code of this talk

Talk is based on PyTorch 1.8.1 and
ONNX Runtime 1.7

https://pytorch.org/
https://pytorch.org/vision/stable/index.html
https://pytorch.org/mobile/home/
https://onnx.ai/
https://www.onnxruntime.ai/
https://www.onnxruntime.ai/docs/how-to/quantization.html
https://pytorch.org/docs/stable/onnx.html
https://pytorch.org/docs/stable/quantization.html
https://pytorch.org/docs/stable/mobile_optimizer.html
https://pytorch.org/tutorials/prototype/ios_gpu_workflow.html
https://pytorch.org/tutorials/prototype/vulkan_workflow.html
https://pytorch.org/tutorials/prototype/nnapi_mobilenetv2.html
https://engineering.fb.com/2018/10/29/ml-applications/qnnpack/
https://github.com/mmagst/embedded_vision_summit_2021/blob/main/example_code.py

