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* 10+ safety violations detecting with near
real-time alerts

* SLA 24/7 with low downtime

e 15 cameras, 40 people, nothing around for
miles, 2 days to get there

* Only satellite connection, and it ain’t Starlink

* Low bitrate (< 1 video stream, lots of packet
loss)
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* Monitoring teeth wear and loss,
fragmentation in the bucket,
cycle length

* Wi-Fi mesh network working at
random times with random speed

 Hardware access possible at semi-
random time once per 1-2 month

e Surges, vibration, coal dust
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Getting the data from the edge device

Uploading software, including NN themselves

Some events are too rare to train

A

No room for error: hard to update, high cost of error
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1. Getting the data from the edge device
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* Filter for blocked view, no ?
movement, fog ®
] Active
* Active learning learning
[Sw- T o
Filter Download n 9
frames dataset
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Active learning explained

Uncertainty sampling

The simplest and most
common method for
uncertainty sampling is to
take the difference
between 100% confidence
and the most confidently
predicted label for each
item.

prc(x) = Po(y*| x)

hedra
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Distort to confuse Proxy ranking

Minimizing the sensitivity to WU I I NE——— .
perturbations with the idea of oot -Egﬂ- o e -w
inducing “consistency’, i.e., el e et :
imposing similarity in e = e ===l
predictions when the input is 3: =l rﬁ@ﬂj‘ i M
perturbed in a way that would ~ ‘""TTTTTTTTTTTT Data Seectn "= 7777 T T T T '

not change its perceptual

content.

L.z, M) =D(P(Y = §{lz. M), P(Y = {|z,. M)),
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2. Uploading software, including NN themselves
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* Training on the edge devices E}E‘
themselves, upload only script and Train
markup (batch size could be smaller locally
due to memory limitation) v
* Upload NN diff (only changed bits) ’)
o
Active
learning
O
W = ' =
Filter Download
frames dataset
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Why uploading NN diff is working

OUTPUT

1. Further back - less changes 2. Maybe training only FC
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3. Some events are too rare to train
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* Using administrative resource to
stage the events

* Using mannequin

* Generate more data:
 ‘Style transfer’ say from Minecraft
* 3D-modelling
* GANs
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‘Style transfer’ say from 3D-modelling GANSs
Minecraft
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4. No room for error: hard to update, high cost of error
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* Monitoring:
 Direct light, blockage, shifting
e Event distribution

 Full simulation of hardware and
software

 Reserve infrastructure

* Auto-restart, auto-rollback
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Wrap Up
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1. Expect development costs 50% higher

2. Expect to spend the delta on DevOps

3. Figure out the network and data transfers limits
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Resource Category 1

Papers mentioned

https://yadi.sk/d/QtogGWO0j64Eadw

FUNIT project page
https://nvlabs.github.io/FUNIT/
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Thank you



