

Deploying Visual AI on Edge Devices: Lessons From the Real World

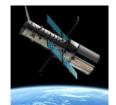
Luc Chouinard
Architect, AI specialist
Teledyne Imaging
Luc.Chouinard@teledyne.com

Teledyne's Imaging World

Teledyne Technologies Inc.: Conglomerate high-tech provider in four major segments:

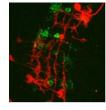
Digital Imaging, Instrumentation, Engineered Systems, Aerospace and Defense Electronics

The <u>Digital Imaging</u> group consists of several different companies focused on various vision and imaging technologies:



- Leading imaging technologies manufacturer
- Teledyne operates in various markets and applications

Machine Vision


Aerospace

Geospatial

Life Science

Science

Semicon

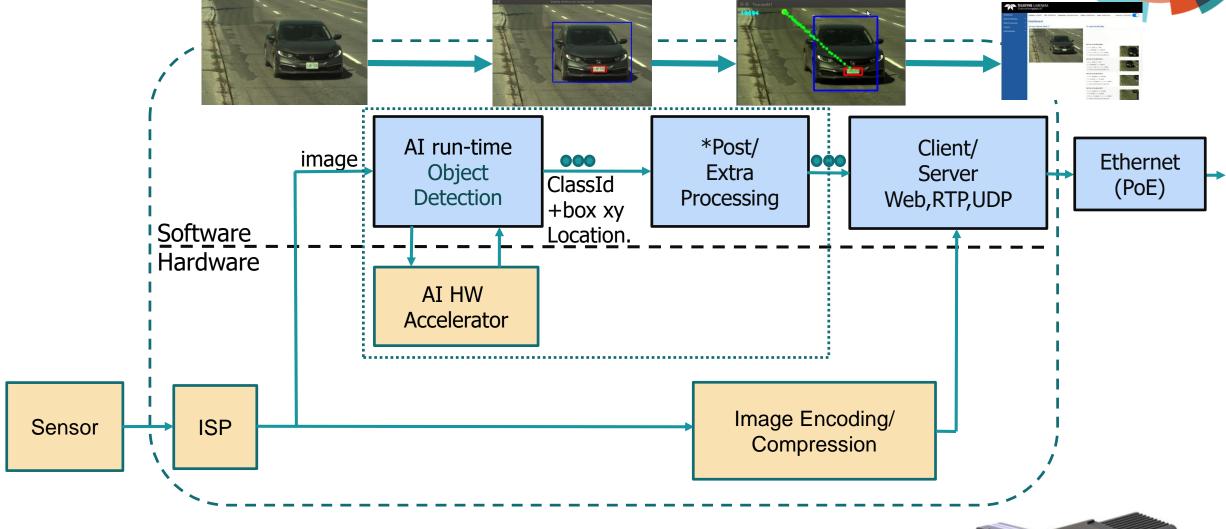
2



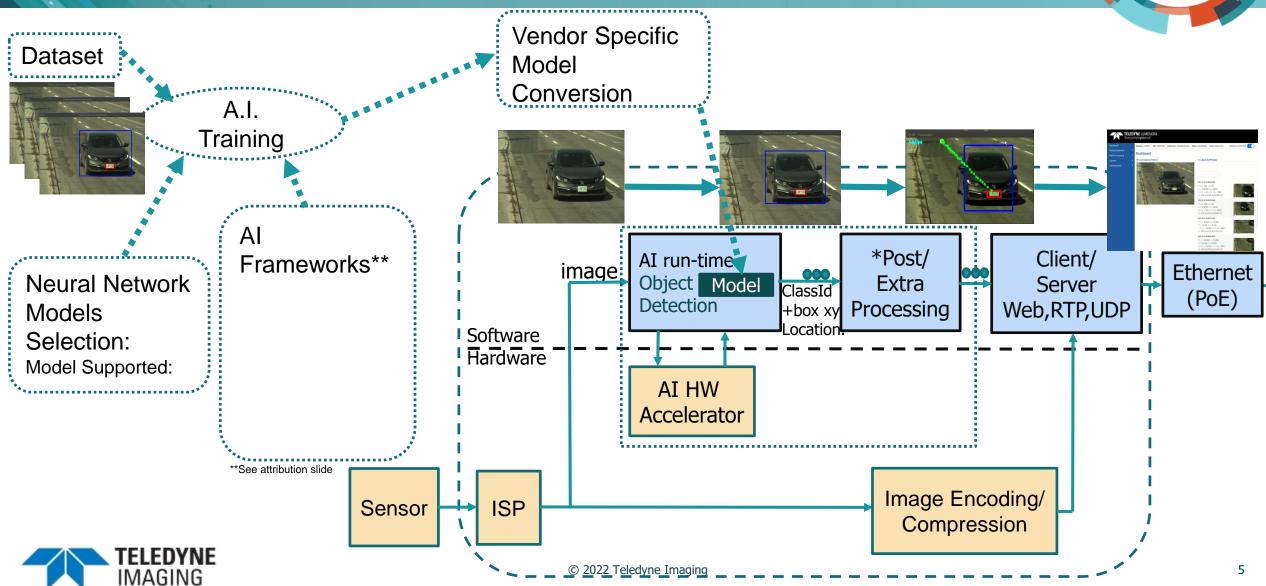
© 2022 Teledyne Imaging

Introduction: Deploying AI on Edge Devices

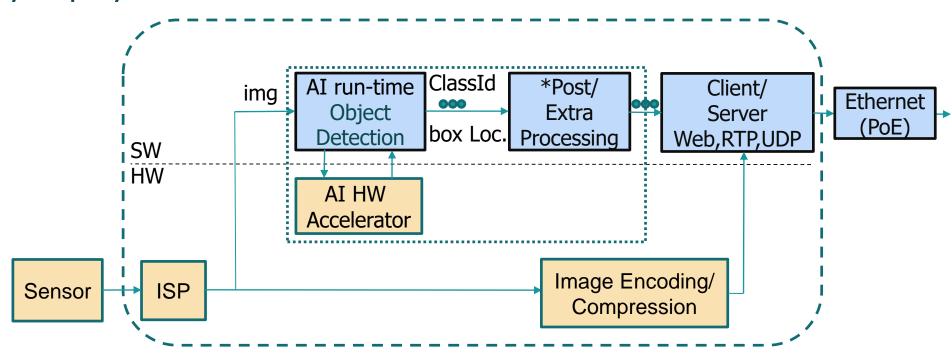
- This presentation aims to pinpoint tips from experience on designing and deploying AI systems on edge devices.
 - As opposed to workstations, deploying AI on edge devices has limitations and tradeoffs that need to be considered:
 - Hardware: cost, power, application processors feature sets, processing power, sensors, ISP, CPU complex, AI Hardware accelerator, IOs
 - **Software**: on dev. platform (SDKs), on camera, development can be done on both.
 - Artificial Intelligence: Supported neural network models, supported AI frameworks, other AI tools such as AstrocyteTM



A Simple Edge AI Camera System Pipeline



Artificial Intelligence Flow



A Simple AI Camera System Pipeline

- How to optimize for real time in SW and HW
- Modularity is important
- Easy deployment

The AI Components Challenges and Takeaways

- AI frameworks and tools
- Training and inference
- Detected object dimensions
- CNN Models, depth, accuracy
- Size of datasets
- Post/extra processing

IMAGING

Ease of use

Object sizes:

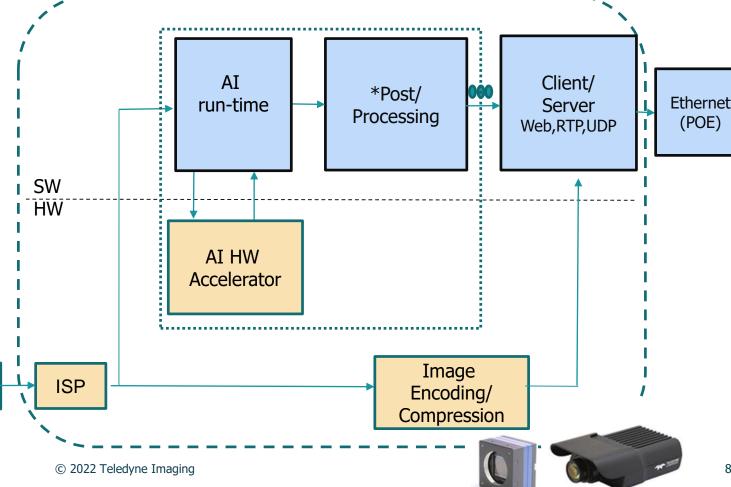
10x10 pixels:too small 30x30 pixels:ok

Neural Network Input Image resolution size:

320x320 pixels: fast 1024x1024:slower

Neural Network Size: Shallow Model depth

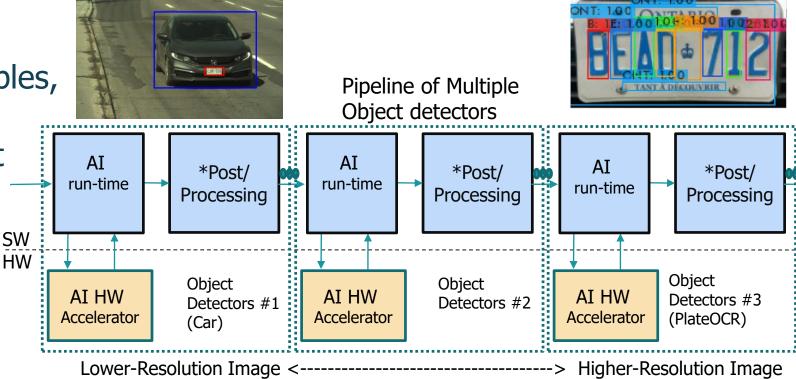
CUDA-version: 11020 (11020), cuDNN: 7.5.0, CUDNN HALF=1, GPU count: 1																			
CUDNN HALF=1																			
$0 pen C \overline{V}$ version: 3.2.0																			
	comput	e capabi	lity		750	, cud	nn h	alf		١,	GPU:	Ge	Force		RTX 2	20	80 T		
li	ayer	filters	size	15	trd	(dil)		i	input						out	ou'	t		
	conv	16			3/		192		96				192		96		16	0.016	BF
	max			2x	2/	2	192		96		16		96		48		16	0.000	BF
2	conv	32			3/		96		48		16		96		48		32	0.042	BF
	max			2x	2/	2	96		48				48		24		32	0.000	BF
	conv	64			3/		48		24		32		48		24			0.042	
5	max				2/		48		24		64		24		12			0.000	
	conv	128			3/		24		12		64		24		12		128	0.042	BF
7	max			2x	2/	2	24						12				128	0.000	BF
	conv	256			3/		12				128		12				256	0.042	BF
	max			2x	2/	2	12				256						256	0.000	BF
10	conv	512			3/						256						512	0.042	BF
11	conv	1024			3/						512						1024	0.170	BF
12	conv	256			1/					X	1024						256	0.009	BF
13	conv	512			3/				3		256						512	0.042	BF
14	conv	132			1/						512						132	0.002	BF
15	yolo																		
16	route	12															256		
17	conv	128			1/						256						128	0.001	BF
18	upsamp	le				2x					128		12				128		
19	route	18 8											12				384		
20	conv	256			3/		12				384		12				256	0.127	BF
21	conv	132			1/		12				256		12				132	0.005	BF
22	yolo																		
Total	L BFLOP	5 0.586																	
ava o	outputs	= 36594																	


A Camera Platform Built with Modularity and Customizability in Mind (slide 1 of 2)

Sensor

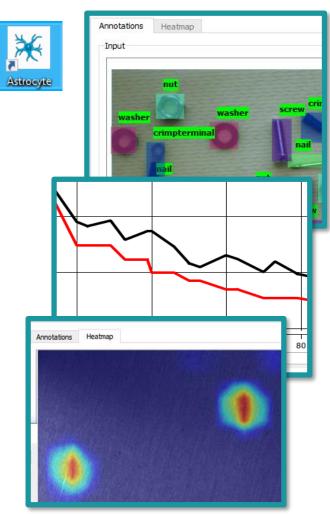
Single Object Detector AI Camera system pipeline

- Modularity kept in mind (1 of 2):
 - Sensor interfaces
 - Neural model selection
 - AI frameworks
 - AI models and their run time
 - The HW processing units



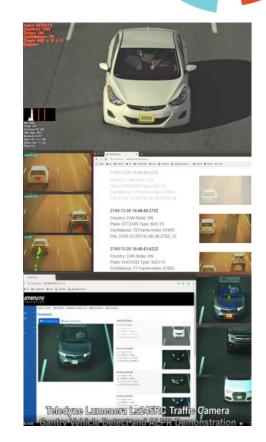
A Camera Platform Built with Modularity and Customizability in Mind (slide 2 of 2)

- Modularity kept in mind (2 of 2):
 - The SW and interfaces:
 - Object detection
 - Trackers
 - "C" code Templates, examples, libraries API
 - Easily adapted for different AI applications
 - Easy deployment with PoE sw



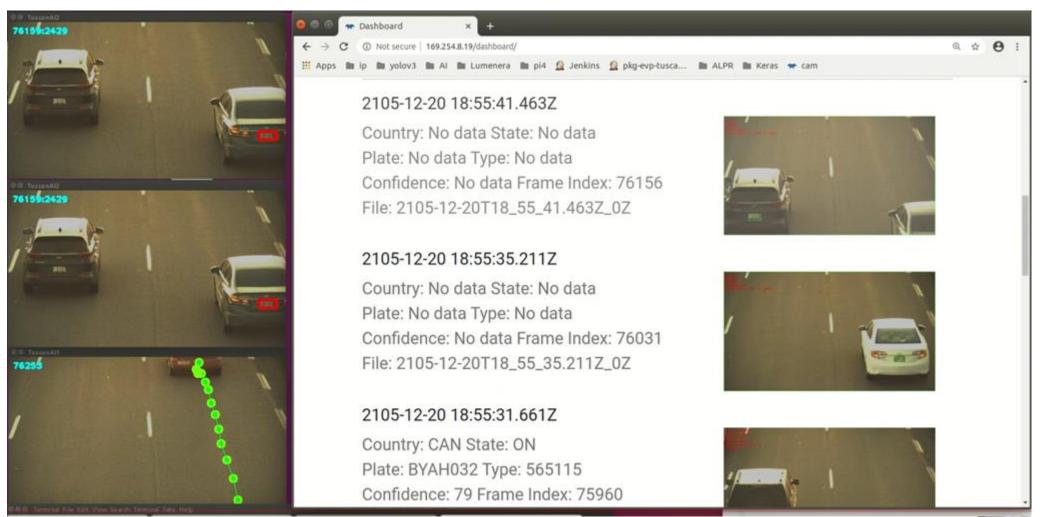
Teledyne Astrocyte Trainer Tool

- AI model creation
- Features
 - GUI-based tool to simplifies Training
 - Training on user PC
 - Various neural networks
 - Hyper-parameter access
 - Visual training progress
 - Exported model files



Demo: Traffic Tolling Demo: Tuscan LS245

- 1. Object detection
 - Vehicles
 - License plates
 - from Low Resolution decimated image
- 2. Tracking of cars and plates
- 3. Optical character recognition from full-resolution image
 - Recognizes state and license plate number
- 4. Web interface
- 5. Simplified deployment with PoE



Demo: Traffic Tolling Demo: Tuscan LS245

Demo: Video 15s

In Conclusion

- 2. Astrocyte is Teledyne's GUI based tool to ease AI training
- 3. The same AI camera platform can be used for a wide range of AI applications
- 4. Edge AI camera platforms can be customized by customers, partners and integrators

Resources

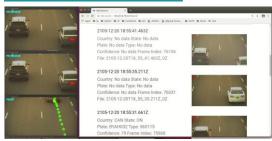
Teledyne Smart Cameras

More cameras to come soon

Teledyne DALSA Software

Astrocyte | Teledyne DALSA Astrocyte

Sapera Processing | Teledyne DALSA


Sherlock | Teledyne DALSA

Teledyne Imaging

Teledyne Imaging: Home

Videos:

Video: Al Demo

Video: Camera TuscanLS245

