

Build Smarter, Safer and Efficient Autonomous Robots and Mobile Machines

Manisha Agrawal, Product Marketing Texas Instruments

Agenda

- Introduction
- Key challenges
- Key care-abouts
 - Sensing
 - System design and performance
 - Functional safety
- Development

Introduction | Smarter, more efficient, safer

Autonomous mobile robots

Autonomous delivery robots

Construction, excavation, agriculture

Introduction | Technology enablers

3D perception

Artificial intelligence

Functional safety

Key challenges | Safe operation

Collision Avoidance

- Detect humans and obstacles
- Navigate around them

Human Presence Detection

- Stop when people are in the safety bubble
- Resume when people are out of the safety bubble

Key challenges | Accurate & affordable sensing

Radar

Pros:

- Cheaper
- Works in all weather

Cons:

Poor angular resolution

Lidar

Pros:

• Better precision and accuracy

Cons:

- Costly, consumes more power
- Poor results in bad weather
- 2D Lidar has poor resolution

Vision

Pros:

- Cheapest and best resolution
- Classify objects & scenes well

Cons:

- Computationally intensive
- Requires good light sources

Key challenges | System design and complexity

System challenges

- High-performance / low-latency processing at low-power
- Small form-factor, ruggedized design
- Cost-optimized design

Application challenges

- Programming of hardware accelerators
- AI development
- Functional safety software

Key care-abouts | Sensing with mmWave radar

TI mmWave	Robotics Benefits
3D presence detection	 True 3D information (range, velocity and angle) of objects vs. LIDAR/ToF used mainly for distance measurement Quickly detect and prevent possible collisions minimizing machine downtimes
Up to IEC 61508 SIL-2 compliant	 Helps enable human presence detection that has traditionally been solved by expensive safety certified LiDAR sensors
Accurate glass detection	Improve reliable detection of glass walls/doors over existing sensors that "see" through them
Wide azimuth area coverage	 Create 360-degree detection zones around the robot to prevent collisions with humans to minimize injury and reduce machine downtimes
Robust in challenging environments	 Increase reliability over existing vision/LiDAR based sensors in conditions such as rain, dust, smoke, complete darkness or in the glare of sunlight

Complement or displace established sensor solutions with up to SIL-2 certified TI mmWave sensors

Key care-abouts | System design with TDA4x

Enhanced Safety

 Hardware and software solutions enabling up to SIL-3 and ASIL-D designs

Energy efficient AI & sensor fusion

 Computer vision, deep learning accelerators & DSP cores delivering_industry-leading performance at low power

Affordable design

 High levels of integration in a single chip reduces system complexity and cost.

Faster development

 Open-source software, tools, SOM and eco-system enable faster-time-tomarket

Key care-abouts | System performance with TDA4x

12

Key care-abouts | Functional safety with TDA4x

13

Architecture

- Independently certified safety development process for ISO26262 and IEC 61508
 - ASIL-D/SIL-3 systematic capability
- Built-in hardware diagnostics
- Peripherals and architectures designed for end system safety capabilities

Software

- Scalable across products
- TUV certified safety software process
- Safety diagnostic library
- Safety diagnostics reference and examples
- Self test libraries
- SW FMEDAs, code coverage, traceability reports
- Compliance support packages
- Compiler qualification kit
- FreeRTOS to SafeRTOS
- AutoSar and MCAL support

Collateral

- Device safety manual
- Configurable FMEDA
- Safety analysis report
- Safety assessment certificate
- Trainings
- White papers and application notes
- Safety-enabled demos

Easy development with industry standard frameworks

15

Application layer	
3D perception Localization Obstacle detection Object tracking Navigation	
Python and C++ programming	
Industry standard APIs and frameworks	
## ROS ★ TensorFlowLite **** ONNX RUNTIME **** CONNX PUNTIME ***** CONNX PUNTIME ************************************	
TI tools and middleware for hardware acceleration	
TI Edge AI processor	
Arm® Cortex®-A DSP Deep learning Imaging Vision Multimedia hardware accelerators	

Full software from TI makes applications development much easier!

TI Edge AI | Extensive tools from TI for faster DL model development and deployment

Free end-to-end TI proprietary tools for faster AI model development and deployment

TI Edge-AI cloud | Free on-line service for deeplearning model selection, deployment and benchmarking

17

Welcome to TI Edge AI Cloud

You are now connected to a Jacinto™ TDA4VM processor evaluation module.

Find your model

Learn performance statistics

Compare model performance

Find the model that best meet your performance and accuracy goals on TI Processor from TI Model Zoo. Learn current performance statistics of models such as FPS, Latency, Accuracy & DDR bandwidth.

Model selection tool

Get model benchmarks

The following Notebooks let you access benchmarks for pre-compiled and custom models

Model performance

Using a pre-compiled model from TI Model Zoo, this example notebook lets you run inference on a TI Edge AI processor to get latency, FPS, DDR bandwidth and power benchmarks

Select task:

- Classification
- O Detection
- Segmentation

Select runtime engine:

- TensorFlow lite
- ONNX runtime
- TVM

Open notebook

Model accuracy

Using a pre-compiled model from TI Model Zoo, this example notebook lets you run inference on a TI Edge AI processor to get accuracy benchmarks.

Open notebook

Custom models

This notebook lets you compile your own model and run inference on a TI Edge AI processor to get latency, FPS, DDR bandwidth, power and accuracy benchmarks.

Select runtime engine:

- TensorFlow lite
- ONNX runtime
- O TVM

Open notebook

Faster deployment with out-of-box demos and production ready components

3D perception and navigation

- ROS, ROS2 based, hardware and DSP accelerated demos
- Production ready GStreamer plugins, OpenVX and ROS nodes for offloading to hardware
- Functional safety complaint low-level drivers
- Community eco-system

2D Object detection

Semantic segmentation

3D Point Cloud

Stereo depth estimation

3D obstacle detection

Pose estimation

AI-based localization

ORB SLAM

Autonomous navigation

Autonomous navigation and collision avoidance video

INSTRUMENTS

19

Conclusion

- Autonomous machine co-existing with humans are increasing productivity in all spheres of life
- Key technology enablers are 3D perception, AI and functional safety
- TI's functional safety compliant mmWave radar sensor increases reliability in seeing the obstacle where other sensors fails
- TI's TDA4x processor enable energy-efficient, functionally safe compliant sensorfusion ad AI powered autonomous mobile machines and robots.

Development | Open-source software & tools

Processor for practical edge AI

ti.com/edgeai

Energy efficient AI architecture

Learn with free cloud tool

ti.com/edgeaicloud

Get started for free

- Example scripts
- TI Model Zoo
- Training videos

Build with 8 TOPS starter kit

P/N: SK-TDA4VM: \$249

Fast Development Cycle

Development | TDA4x processors

23

Edge AI evaluation

https://dev.ti.com/edgeai

https://dev.ti.com/edgeaicloud

https://dev.ti.com/edgeaiprojects

Full development

Product Folder: https://www.ti.com/product/TDA4VM

http://www.ti.com/tool/PROCESSOR-SDK-DRA8X-TDA4X

Starter Kit: https://www.ti.com/tool/SK-TDA4VM

TDA4 EVM: http://www.ti.com/tool/TDA4VMXEVM

Software development kits

TI Processor SDK for edge AI — Seamlessly reuse and migrate Linux, https://www.ti.com/tool/download/PROCESSOR-SDK-LINUX-SK-TDA4VM#downloads

Support

https://e2e.ti.com

Learn on https://training.ti.com/process-monthly-webinar-series

Development | **TI mmWave radar**

Evaluation modules

IWR6843 ISK (60 GHz)
IWR6843 AOP (60 GHz Antenna on package)
IWR1843 BOOST (77 GHz)

Reference examples/labs

Sense and avoid lab for collision avoidance
360° safety bubble with ROS lab for safe human presence detection

Accelerate path to production with 3P network

<u>Designing TI mmWave made easier using 3rd party ecosystem</u> <u>Industrial mmWave third-party search tool</u>

