embedded VISION summit

Tools for Creating Next-Gen Computer Vision Apps on Snapdragon

Judd Heape VP Product Management for Camera, Computer Vision and Video Technology

Computer Vision in Snapdragon Three function levels to provide comprehensive CV solutions

Acceleration blocks to support and enable hardware, software and system designs in Snapdragon platforms CV Algorithms to demonstrate complete workflows that provide state-of-the-art solutions to certain perception problems

2

CV end-to-end Applications in mobile, XR, Automotive and IOT market segments to enable unique and enhanced user experiences

Qualconn

embedded

VISION

Engine for Visual Analytics (EVA): Computer Vision Hardware Blocks

Object/Face Detection	Optical Flow	Depth Estimation	Feature Extraction	Geometry Correction	XR & 3DR
Object Detection HOG/SVM	Semi-dense OF GMO for video encode	DFS 1080p@30 Video Bokeh	Feature – video encode with 30% BR reduction HCD/NCC	Lens Distortion Correction	EVA1.X
•	•	•	•	•	
ACF/RDF Face Detection			HCD/ORB – Centralized ME for camera	Exposure Compensation	VA2.X
••			•	••	Ш
	Dense OF (SGM based) Dense motion map for multi-frame processing, sensor alignment	DFS (SGM based) • Bokeh better quality • Visual special effect • XR 3D reconstruction	Flow improvement for XR 6DoF/VIO	Motion and depth map warping LSR (in EVAa 3.5)	XRA - DoH,DoG FREAK, R-BRIEF (In EVAa/EVAv 3.5)
			•		

Qualcom

embedded

VISION summit

Optical Flow

Sparse Motion

- Feature Point Detection, Local and Global Motion
- Various Detector and Descriptors (Harris, DoH, DoG, FREAK)

Dense Motion

- Semi-dense Optical Flow (sDOF)
- Dense Optical Flow (DOF)
- Hybrid Deep Learning based Motion + OF Segmentation Enhanced

	Semi-Dense OF	Dense OF
Motion Density	Every 2x2 block	Every pixel
Motion Accuracy	1/8 pixel	1/16 pixel
Motion Range (X,Y)	±128, ±64	±64, ±32
Max Resolution	1920x1080	1152x648
Confidence Map	8-bit	8-bit
Frames per Second	60	60

Qualcom

embedded

Depth from Stereo Estimation

Depth from Stereo (DFS)

- Super-pixel Segmentation on SLIC
- Feature Extraction and Matching
- Confidence Map and Post Processing

Depth Density	Every pixel
Disparity Accuracy	1/16 pixel
Disparity Level	[0,63]
Max Resolution	720P@60FPS

Qualcomm

embedded

VISION

Geometric Correction Engine (GCE)

Low-power High-quality Warping

• ICA maps output pixels to input pixels

Effective Transformation

- Sparse grid transformation (35x27 or 67x51)
- Dense grid transformation (8 pixel grid)
- Perspective transformation (3x3 transform)

GCE Use Cases

- Lens distortion correction
- Motion vector grid composition
- Rectification

Rectification

embedded

VISION

summit

Normalized Cross Correlation

embedded VISION summit

NCC Supports Two Modes

- Patch to Frame Mode
- Frame to Frame Mode

Face Detection

Deep Learning based Face Detection (FD)

- Min Face Size: 32x32
- Detection Accuracy: 95%
- 1080p@60FPS
- Multiple cameras supported

Under Non-Ideal Conditions

- Strong Backlight
- Full Profile
- Occlusions Face Masks, Hats, Glasses, Sunglasses

Strong Backlight

Full Profile

Occlusions

embedded

VISION summit

EVA Architecture and Access

- The EVA APIs are exposed both from the CPU and Hexagon Processor sides
- It includes both synchronous APIs and asynchronous APIs
- There are direct interrupts between the Hexagon Processor and EVA cores for low latency communication
- EVA includes embedded CPU primarily for task scheduling and hardware pipes
- EVA hardware pipes are shared between certain functions

embedded VISION summit

EVA3.0 Features	EVA API
Image Warping	evaWarp_Sync / evaWarp_Async
Depth from Stereo (DFS)	evaDfs_Sync / evaDfs_Async
Normalized Cross Correlation (NCC)	evaNccFrame_Sync / evaNccFrame_Async
Optical Flow (OF)	evaOF_Sync / evaOF_Async
Feature Extraction (HCD)	evaFeaturePoint_Sync / evaFeaturePoint_Async
Feature Descriptor Calc & Matching	evaDcm_Sync / evaDcm_Async
Downscaler	evaScaledown_Sync / evaScaledown_Async
Pyramid Image	evaPyramidImage_Sync / evaPyramidImage_Async

EVA SDK Simulator

Command Prompt

 is not recognized as an internal or external command, operable program or batch file.

C:\Workspace\Release\Snap\EVA-Mobile-3.0.6\build\scode\Release>.\eva_scode.exe --help Reset XML Parameter tree in Memory:

Usage

IDEO_CODEC_HW_VERSION: IRIS1.0

EVA SCODE INFO] Query and populate init configuration parameters.
EVA SCODE INFO] Query and populate frame configuration parameters.
EVA SCODE INFO] Create EVA session.
EVA SCODE INFO] Initialize feature handle.
EVA SCODE INFO] Load input data.
EVA SCODE INFO] Allocate memory for output buffers.
EVA SCODE INFO] Start EVA session.
EVA SCODE INFO] Execute feature sync mode.
EVA SCODE INFO] Compare output with ground truth.
[1;32m[EVA SCODE SUCCESS]←[0m Output matches ground truth
EVA SCODE INFO] Deallocate buffers and terminate EVA session.
[1;32m[EVA SCODE SUCCESS]←[0m Sample code finished execution successfully.

:\Workspace\Release\Snap\EVA-Mobile-3.0.6\build\scode\Release>_

--mode=<feature-mode-number> --data=<path-to-data-folder>

Options

--help

Features

- DCM : Descriptor Calculation and Matching Modes - 1 (EVA_DCM_CAL) / 2 (EVA_DCM_CAL_MATCH)
- DFS : Depth From Stereo

.\eva scode.exe [options]

--feat=<eva-feature-string>

- DS : Scaledown
- FPX : Feature Point Extraction Modes - 1 (EVA_FPX_PEAK_8x8) / 2 (EVA_FPX_ZONE)
- NCC : Normalized Cross Correlation Modes - 1 (EVA_NCC_PATCH_MODE) / 2 (EVA_NCC_FRAME_MODE)
- WNCC : Warped Normalized Cross Correlation Modes - 1 (EVA_WNCC_MONO_MODE) / 2 (EVA_WNCC_STEREO_MODE)
- OF : Optical Flow
- PYRFPX : Pyramid Image and Feature Point Extraction
- PYRIMG : Pyramid Image
- WARP : Image Warping
 - Modes 1 (PERSPECTIVE) / 2 (GRID) / 3 (LMC)

CV Use Case 1 Depth Map from Stereo Cameras (DFS)

Applications

- Accurate Camera/Video Bokeh effect
- Background replacement in video recording or Zoom call
- AR/VR (3D Reconstruction, Video Passthrough, Occlusion)

Qualcomm

embedded

VISION

CV Use Case 2 Real Time Bokeh Effect using Depth Map from Stereo Cameras (DFS)

Applications

• Accurate Camera/Video Bokeh effect

Qualcomm

embedded

VISION summit

CV Use Case 3 Dense Motion Map (DMM) for Video MCTF

Key Benefits of EVA

- Register multiple frames with local motion compensated
- Remove ghosting artifacts in combined video frames

Qualcomm

embedded

VISION

CV Use Case 4 Dense Motion Map (DMM) for Video MFHDR

Key Benefits of EVA

- Estimating and compensating for motion is key to achieve high quality HDR video
- Remove ghosting artifacts in combined video frames
- Running global motion and local motion estimation simultaneously requires large amount of computation power

Qualcomm

embedded

VISION

CV Use Case 5 Face Detection (FD) and Face Landmark Detection (FLD)

Applications

- Gender/Expression/ Emotion/Gaze detection
- Avatar animation
- Geometric personalization

Qualcomm Deep Learning-based 3D face landmark detection reaches high accuracy in locating **115 or 300 facial landmarks**

Start Developing on Snapdragon

For access to the SDK contact:

Xin Zhong Director, Product Management xzhong@qti.qualcomm.com

Thank You

_ _ _ _ _ _ _ _ _