
Is Your AI Data Pre-processing
Fast Enough?
Speed It Up Using rocAL™

Rajy Rawther
PMTS Software Architect
Advanced Micro Devices, Inc.

• Introduction: Why do we need rocAL?

• rocAL pipeline and architecture

• Operators for data loading and augmentations

• Flexible pipelines: scalability across multiple devices

• How to use rocAL?

• Deep dive into MLPerf object detection example with rocAL

• rocAL performance advantages

• rocAL use case in inference

• Conclusion

Agenda

2© 2022 Advanced Micro Devices

The Problem

3

Many Data
Formats

FileList
TFRecord
RecordIO

LMDB

Lots of
Frameworks

What processor
to choose?

GPU

CPU

Custom

FPGA

Each Framework has its own data processing pipeline and each needs to
be optimized individually

Needs a
unified
Library

© 2022 Advanced Micro Devices

• GPU performance increases >2x every new
generation

• Native pipelines mostly use CPU cores for pre-
processing data before training

• As training gets faster with GPUs, the pre-
processing needs to catch up

• EPYC™ + MI100: 64 CPU cores, 8 GPUs, 8
CPU cores/GPU

• EPYC™ + MI200: 64 cores, 8 GPUs(2x perf),
8 CPU cores/GPU, >300 TFLOPs (FP16)

• Falling CPU/GPU performance throttles the
overall speed 0

500

1000

1500

2000

2500

3000

Im
ag

es
 p

er
 s

ec

#CPU/GPU cores

GPU Vs CPU performance comparison

Training Preprocessing Overall

Feeding the Beast: How to Fully Utilize GPUs?

4

High-performance pre-processing library which
can load balance between CPU and GPU

© 2022 Advanced Micro Devices

Introducing ROCm Augmentation Library (rocAL™)

5

CPU/GPU
decode

Training
dataset

Augmentations
CPU/GPU based

Ready to
train/infer data

Training or
Inference

© 2022 Advanced Micro Devices

• CPU and GPU based implementations for each operators

• Python and C++ APIs for easy integration and testing

• Flexible graphs to create custom pipeline utilizing CPU cores or GPU

• Supports many new augmentations like fish-eye, non-linear blend, water, RICAP, etc.

• Support for many workloads

• Classification

• Object detection

• Pose estimation and segmentation

• Seamless interoperability with frameworks using rocAL framework plugins

• Optimized to give maximum performance on AMD EPYC™ CPUs and AMD Instinct™ GPUs

Key Features of rocAL

6© 2022 Advanced Micro Devices

A pipeline is a graph of data flow connected by node operators

What is a rocAL Pipeline?

7

Loader

Decoder Resize

TrainingMeta-data
Augmentations

Image Loader

TFRecord
Loader

LMDB Loader

Video Loader

Audio Loader

…..

JPEG Decoder

JPEG Cropped
Decoder

Video Decoder

Audio Decoder

…..

Resize

Crop

ColorTwist

Brightness

Contrast

…..

PyTorch

TensorFlow

MxNet

Caffe

Caffe2

…..

Augmentations

Labels, bboxes

Jpegs

© 2022 Advanced Micro Devices

rocAL Pipeline Dataflow

8

Multi-core host or GPU

Execution

Dataset

rocAL pipeline

Augmentation Nodes

Python & C APIs

Ready to train data

© 2022 Advanced Micro Devices

rocAL Architecture

9

Loader
Module

Output Q

MetaData
Reader

nodenodenodenode

Input
Prefetch
Buffer

Internal Thread

reader

decoder
decoder

decoder
decoder

Batch Count

ColorTwist

Brightness

Contrast

Flip

Rain

Resize

Loader Module
Processing module

rocAL pipeline Augmentation
Nodes

© 2022 Advanced Micro Devices

Reader

File Reader

COCO Reader

TF Reader

RecordIO Reader

LMDB Reader

Loader

ImageLoader

ImageLoaderSharded

Video Loader

Audio Loader

SequenceLoader

Decoder

Tjpeg Decoder

Cropped Decoder

HW Decoder

Video Decoder

Audio Decoder

ImageAug

Resize

Crop

ColorTwist

Normalize

Rotate

Flip

rocAL Operators

10© 2022 Advanced Micro Devices

rocAL Advantage

11

• One unified library that integrate to all the frameworks

• Optimized augmentation operations used among all

• Flexible to support different data formats (File folder reading, LMDB, TF Record, Record IO). Portable
between frameworks

CPU GPU DLAAPU

© 2022 Advanced Micro Devices

• rocAL pipelines can be accessed using three simple steps (Define/Build and Run)

Using rocAL

12

from amd.rocal.pipeline import pipeline_def
import amd.rocal.fn as fn

@pipeline_def
def example_pipeline():

jpegs, labels = fn.readers.file(file_root=file_dir)
images = fn.decoders.image(jpegs, device=decoder_device)
resized_images = fn.resize(images, device, resize_w, resize_h)
return resized_images, labels

images, labels = pipe.run()

Define

Build

Run

pipe = example_pipeline(batch_size=8, num_threads=32,device_id=0)
pipe.build()

© 2022 Advanced Micro Devices

Each sample is decoded and resized to 224x224

Sample Output From Example_ Pipeline

13

Jpegs

Output tensor Labels

Labels

File Reader

Decode

Resize

Metadata Reader

Metadata

Augmentations

© 2022 Advanced Micro Devices

Flexible Pipelines: Scalability Across Devices

14

Input Dataset

Shard 0

Shard 1

Shard 2

Shard n

rocALPipeline 0

rocAL Pipeline 1

rocAL Pipeline 2

rocAL Pipeline n

Allocated CPU cores and GPU

Allocated CPU cores and GPU

Allocated CPU cores and GPU

Allocated CPU cores and GPU

Each pipeline is configured with GPU device_id and CPU core bindings

© 2022 Advanced Micro Devices

0

5000

10000

15000

20000

25000

Native Pytorch rocAL-cpu rocAL-gpu

IM
AG

ES
 P

ER
 S

EC

ResNet-50 Mlperf training throughput (AMD EPYC™ Server with MI200, batch_size =128)

Preprocessing Training Total

rocAL’s Impact In Performance (Mlperf Resnet-50
Training)

15© 2022 Advanced Micro Devices

Radeon Performance Primitives (RPP) Library

rocAL’s Core: AMD RPP Library

16

Hand Optimized High Performance Library Under AMD’s ROCm Stack

© 2022 Advanced Micro Devices

0

500

1000

1500

2000

2500

3000

3500

Resize CropMirrorNormalize ColorTwist Rotate

IM
AG

ES
 P

ER
 M

IL
LI

SE
C

AUGMENTATION TYPE

RPP performance compared to native processing for batch_size=128 on MI200

Native Host HIP

RPP Advantage

17

Higher is better

© 2022 Advanced Micro Devices

Example: SSD Object Detection Training
Augmentations

18

Good crop

SSDRandomCrop

Resize

ColorTwist

RandomMirror

Image with bboxes

Bad crop

Color Twisted

Resized

Randomly flipped

© 2022 Advanced Micro Devices

Mlperf SSD Training With rocAL

19

def COCOPipeline(batch_size, num_threads, local_rank , world_size, device_id, data_dir, ann_dir):
pipe = Pipeline(batch_size, num_threads, device_id=device_id)
with pipe:

jpegs, bboxes, labels = fn.readers.coco(path=data_dir, random_shuffle=True)
crop_begin, crop_size, bboxes, labels = fn.random_bbox_crop(bboxes, labels, device="cpu",

aspect_ratio=[0.5, 2.0],
thresholds=[0, 0.1, 0.3, 0.5, 0.7, 0.9])

images_decoded = fn.decoders.image_slice(jpegs, crop_begin, crop_size, device="cpu", type = types.RGB)
res_images = fn.resize(images_decoded, device="gpu", resize_x=crop, resize_y=crop)
cl_twist_images = fn.color_twist(res_images, device="gpu", contrast_rand, brightness_rand, hue_rand)
bboxes = fn.bb_flip(bboxes, ltrb=True, horizontal=flip_coin)
images = fn.crop_mirror_normalize(cl_twist_images, device="gpu",

crop=(crop, crop),
mirror=flip_coin,
mean=[0.485*255,0.456*255 ,0.406*255],
std=[0.229*255 ,0.224*255 ,0.225*255])

bboxes, labels = fn.box_encoder(bboxes, labels, device=rali_device)
pipe.set_outputs(images, bboxes, labels)

train_loader = rocALGenericIterator(pipe)
pipe.build()

for i, data in enumerate(train_loader):
images, bboxes, labels = data
do model training

Define

Build

Run

© 2022 Advanced Micro Devices

0

100

200

300

400

500

600

700

800

900

1000

MI100-native MI100-rocAL-GPU MI200-native MI200-rocAL-GPU

TI
M

E
IN

 M
IL

LI
SE

C

SYSTEM TESTED

SSD Training Profiling Comparison

DataLoading Training Total

rocAL Advantage in MLPerf SSD Training

20

Overall time is
significantly

reduced

© 2022 Advanced Micro Devices

Decode,
Resize,

Normalize

rocAL Use Case In Inference: Inference Server

21

Initialize Inference
(Compile, build inference graph,

set-up hardware)

Image
database

1. Choose model &
parameters

2. Choose dataset

3. View resultsResults

Up to 8 GPUs on a single
server node

Client Server

Model and Parameters

Status

CPU
cores

Images

Results

Inference Server Node

Setup Phase

rocAL

Inference

GPUsInference Execution

© 2022 Advanced Micro Devices

Different Stages Of Inference Pipeline

22

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

OV
ER

AL
L

FP
S

NUM OF CPU OR GPU CORES

Inference pipeline stages, potential FPS

1 4 16 32 1 4 16 32 1 2 4 8

File Read JPEG Decode Convert to Tensor GPU Inference

HDD SSD NVME

© 2022 Advanced Micro Devices

Challenges

• Meta data augmentations and new data-types are introduced to help with
bounding-box and other meta-data augmentations

• CPU based decoding has a hit on performance even with TJpeg decoder

• Hardware decoder using VCN

• ROI based decoding

• Memory management is tricky when we use mixed devices and variable
batch_size

• Discrepancies in image-processing transforms across different frameworks.
Transforms produce different outputs.

• Video processing needs new data layout to represent sequences (NFHWC)

© 2022 Advanced Micro Devices

Conclusion

• rocAL is the AMD open source accelerated data augmentation and
data loading library

• It provides full pre-processing pipelines to be used for training or
inference

• Has easy framework integration for today’s machine learning
workloads

• rocAL’s hybrid pipelines help intelligent load balancing between CPU
and GPU

• It is portable across multiple framework with one underlying library

• The AMD Open sourced RPP library provides the backbone for rocAL

24© 2022 Advanced Micro Devices

References

rocAL

https://github.com/GPUOpen-ProfessionalCompute-
Libraries/MIVisionX/tree/master/rocAL

MIVisionX

https://gpuopen-professionalcompute-
libraries.github.io/MIVisionX/

RPP

https://github.com/GPUOpen-ProfessionalCompute-
Libraries/MIVisionX

AMD ROCm

https://rocmdocs.amd.com/en/latest/

25© 2022 Advanced Micro Devices

https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/tree/master/rocAL
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/
https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX
https:///
https://rocmdocs.amd.com/en/latest/

Disclaimer

26

• The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and
typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but
not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product
differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks
of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct or
revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content
hereof without obligation of AMD to notify any person of such revisions or changes.

• THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS
HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.
AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY
PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER
CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

• © 2022 Advanced Micro Devices, Inc. All rights reserved.

• AMD, the AMD Arrow logo, EPYC, Radeon, MI100, MI200, rocAL, RPP, MIVisionX, ROCm and combinations thereof are trademarks of Advanced
Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

© 2022 Advanced Micro Devices

