
© 2022 Flex Logix Technologies 1

The Flex Logix InferX X1:
Pairing Software and
Hardware to Enable Edge
Machine Learning

Randy Allen

Vice President of Software

Flex Logix Technologies

© 2022 Flex Logix Technologies

History of ML/AI

2

1950 1960 1970 1980 1990 2000 2010 2020

KNOWLEDGE DRIVEN

1952: ML coined

DATA DRIVEN

Winter WinterBoom

AI

ML

ML Winter

Birth Symbolic AI Tedious engineering
Deep learning

Legitimized Minis Killer Micros Ubiquitous GPUs

1965 Neural

Networks
1997: Deep Blue

2006: Deep

Learning

© 2022 Flex Logix Technologies

“
“It’s not possible.”

3

On hitting power and
thermal barriers, the
hardware world threw up
a Hail Mary of
“parallelism” hoping
someone in the
software world will run
underneath and catch it

Dave Patterson,
BERKELEY ARCHITECTURE

DUDE

When we start talking about
parallelism and ease of use of truly
parallel computers, we’re talking
about a problem that’s as hard as
any that computer science has
faced… I would be panicked if I
were in the industry

John Hennessy,
STANFORD COMPILER DUDE

“
“No, it’s necessary.”

© 2022 Flex Logix Technologies

Not a new challenge

4

“Dead Parallel Computer Society”

Convex, Alliant, Multiflow, Encore, FPS, Inmos, Kendall Square,

MasPar, nCUBE, Sequent, SGI, Thinking Machines ….

RIP
They Tried

and Died

© 2022 Flex Logix Technologies

Matrix multiplication: a simple example

Scalar

Vector

for(i=0; i<n; i++)

for(j=0; j<n; j++)

for(k=0; k<n; k++)

c[i][j] += a[i][k] * b[k][j];

for(i=0; i<n; i++)

for(js=0; js<n; js+=s)

for(k=0; k<n; k++)

for(j=js; j<js+s; j++) //vector

c[i][j] += a[i][k] * b[k][j];

5

© 2022 Flex Logix Technologies

Matrix multiplication in parallel

Scalar: Cache optimized

for(ib=0; ib<n; ib+=bi)

for(jb=0; jb<n; jb+=bj)

for(k=0; k<n; k++)

for(i=ib; i<ib+bi; i++)

for(j=jb; j < jb+bj; j++)

c[i][j] += a[i][k] * b[k][j];

6

© 2022 Flex Logix Technologies

Systolic array

for(i=0; i<n; i++)

for (j=i; i>0; i–){

for (k=i; i>1; k–) {

ta(j,k) = ta(j,k-1);

tb(k,j) = tb(k-1,j);

}

}

it = i;

for (j=0; j<i; j++){

ta(j,i) = a(j,t);

tb(1,j) = b(t,j);

it = it - 1;

}

for (j=0; j<i; j++)

for k=0; k<i; k++)

c(j,k) += ta(j,k) * tb(j,k);

7

© 2022 Flex Logix Technologies

Achieving balance

Distributed

Memory
Shared

Memory

Number of processors

Delivered Performance

One Many

Efficiency

Parallelism

Easy to Build

Hard to Program

Easy to Program

Hard to Build

8

© 2022 Flex Logix Technologies

The real challenge of AI is

NOT

Packing more processors onto a die than anyone else in the world

Creating the fastest processor synchronization in the world

Designing a large ({distributed, fetch-and-phi, shared,}) memory system

BUT INSTEAD
Designing a multiprocessor system with a balance between processors and memory
With the right set of specialized instructions for acceleration
In conjunction with software that can effectively utilize the system

BECAUSE
More processors are useful only if the software can compile the net to use them
Eliminating the need for synchronization is far more effective than faster synchronization
The key to fast processing is reusing data, not fetching it quickly

9

© 2022 Flex Logix Technologies

The Flex Logix InferX™ X1

10

• Dynamic TPU Array

• Accelerator/Co-processor for

host processor

• ASIC performance but dynamic

to new models

• Low power/High performance

• Designed for edge (B=1)

applications

4MB L3

SRAM

eFPGA

LPDDR

4

x32

PCIe

Gen3/4

x4

4K MAC Units
8MB distributed

L2 SRAM

© 2022 Flex Logix Technologies

ASIC efficiency with CPU/GPU flexibility

11

2019: Xin Feng, Computer vision algorithms and hardware implementations:

A survey InferX position added by Flex Logix

InferX Technology

• Dynamic Tensor Processing

• Highly Silicon Efficient

• Programmed via standard AI Model

Paradigms (TensorFlow, PyTorch,

ONNX)

• Layer by Layer reconfiguration in

microseconds

© 2022 Flex Logix Technologies

Embedded Application

+
X1

X1 drivers X1 Runtime

Embedded App at The Edge

Runtime API

Neural Net

Conv

AvgPool

MaxPool

Concat

.ncf

InferXDK

Software

Development

Toolkit

System level view of software

12

NN Model Framework

© 2022 Flex Logix Technologies

InferX compiler: unleashes the power of X1

13

NN FRAGMENT

SELECTION OF

OPERATORS

Add

Convolution

AvgPool

MaxPool

Affine

Concatenate

….

Configure ConnectSelect

L2 1DTPU

+1DTPUL2

1DTPU

1DTPU L2

L2 1DTPU

+1DTPUL2

1DTPU

1DTPU L2

Input

Memory

MACS Misc Ops Output

Memory

© 2022 Flex Logix Technologies

INFERX RUNTIME C++ API

FUNCTIONS DESCRIPTION ARGS

StartInference Executes single inference Data_handle

InferMulti Executes multiple inferences times

WaitForInferenceReady Waits for inference to finish { }

GetInferOutputData Retrieves inference results data_out

SetModel Loads model into memory filename

SetData Established Data data

Initialize Initialize X1 HW { }

Runtime software API

14

Simple API used to couple

host application to the

inference processing that is

offloaded to the InferX X1 co-

processor

Embedded Application

+
X1

X1 drivers X1 Runtime

Embedded App at The Edge

Runtime API

© 2022 Flex Logix Technologies

Assuring high quality performance

15

• Input/Output Quantization

• Activation Functions

• Padding

2

51

2
Dept

h

2

51

2
Dept

h

2

51

2
Dept

h

2

51

2
Dept

h

2

51

2
Dept

h

2

51

2
Dept

h

2

D

1
Dept

h

2

51

2
Dept

h

2

51

2
Dept

h

2

3Dept

h

2

51

2
Dept

h

2

51

2
Dept

h print(“Hell

oWorld”)

Cross Functional

Exploration32

2

3Depth

HW configuration depends

on Conv2D shape

SWHW

Apps

Input

Tensor

Input

Tensor

2

51

2
Dept

h

2

51

2
Dept

h

2

51

2
Dept

h

2

D

1
Depth

H

W

D1

3

N >>

128

608

608

Capturing All

Attributes

Random

Weight

Tensor

© 2022 Flex Logix Technologies

Accelerating AI for embedded processing

16

• Retains customer programming model

○ Does not force customer to move to Arm or Linux with
SoC approach

○ Minimize time to market and development cost

○ Only need Add-in PCIe or M.2 card plus drivers

• Reduces dependence on rapid interface technology
evolution

○ Accelerator uses standard PCIe, DRAM

○ Leave Camera and Display interface selection/evolution
to Host

• Enables R&D and silicon focus on acceleration
processing

○ Dedicate more silicon to high leverage acceleration logic

○ Reduced engineering complexity

CPU

PCIe G4x4

8GB DDR44GB LPDDR4

MIPI to

USB

USB 3

MIPI CSI or USB Cameras

AI Accelerator

RGMII

Ethernet

USB 3

eDP

or

LCD

© 2022 Flex Logix Technologies

Minimal effort required to go from model to
inference

17

Customer Input

InferX WorkflowCompiler

Neural net

Model

Inference
Results

Bit file
X1 Hardware

Data
Stream

Runtime
Device

Control

Application Layer

STEP 1 STEP 2 STEP 3

© 2022 Flex Logix Technologies

Can help you gain a competitive advantage

Putting it all together

18

Inferx @flex-logix.com
Contact

Us

Product Impact

• Optimized solutions

around your use

cases

Compiler SW

• Robust

• Maximum

performance

• Minimal user

intervention

Hardware

• Future proofed

• GPU flexibility with

ASIC performance

• Low power

Runtime SW

• The InferX Runtime

API is streamlined

for ease-of-use

© 2022 Flex Logix Technologies

Thank you

Visit us on the expo floor for more information

19

