
Copyright © 2022 Google and BDTI 1

TensorFlow Lite for
Microcontrollers: Recent
Developments

Advait Jain
Staff Software Engineer
Google

David Davis
Senior Embedded Software Engineer
BDTI

John Withers
Automation and Systems Engineer
BDTI

Copyright © 2022 Google and BDTI

Outline

• 10,000-foot view of TensorFlow Lite Micro

• BDTI/Google Collaboration

• Updated Arduino port of TFLM

• New Kernel Operators

• Improved CI via GitHub Actions

2

Copyright © 2022 Google and BDTI

TensorFlow Family (10,000-Foot view)

3

• TensorFlow (platform & ecosystem)
• End-to-end open source platform for machine learning
• Comprehensive, flexible ecosystem of tools, libraries and community resources that lets researchers

push the state-of-the-art in ML and developers easily build and deploy ML powered applications

• TensorFlow (library)
• The core open source library to help you develop and train ML models

• TensorFlow Lite
• Library for deploying models on mobile, microcontrollers and other edge devices

• TensorFlow Lite Micro (TFLM)
• Library to run machine learning models on DSPs, microcontrollers, and other embedded targets with a

small memory footprint and very low power usage

Copyright © 2022 Google and BDTI

• Library designed to run machine learning models on embedded targets without any OS support, no dynamic memory

allocation and a reduced set of C++11 standard libraries

• Leverages the model optimization tools from the TensorFlow ecosystem and has additional embedded-specific offline and

online optimizations to reduce the memory footprint from both the model and the framework

• Integrates with a number of community contributed highly-optimized hardware-specific kernel implementations

• All the TFLM modules are tested on a variety of targets and toolchains via software emulation for each pull request to

the TFLM GitHub repository

• TFLM provides tools, CI, and examples for how to integrate it into various embedded development environments

TensorFlow Lite Micro (10,000-Foot View)

4

BDTI/Google Collaboration:
Updated TFLM Port to Arduino

Copyright © 2022 Google and BDTI

Google and BDTI have created a new repository with platform specific example
code for the Arduino Nano 33 BLE Sense.

The code base is synchronized nightly from the TFLM repository using Github
workflows.

All example applications are independently maintained within the Arduino examples
repository.

Includes support for CMSIS_NN.

Code in this repository can be used with both the Arduino IDE and CLI. With single
step Git cloning of the repository into the Arduino library folder, TFLM is ready for
use.

TFLM Arduino Examples: New Repository

6

Copyright © 2022 Google and BDTI

Repository adheres to this guideline document:

https://github.com/tensorflow/tflite-
micro/blob/main/tensorflow/lite/micro/docs/new_platform_support.md

Nightly synchronization script and workflow:

https://github.com/tensorflow/tflite-micro-arduino-
examples/blob/main/scripts/sync_from_tflite_micro.sh

https://github.com/tensorflow/tflite-micro-arduino-
examples/blob/main/.github/workflows/sync.yml

TFLM Arduino Examples: New Repository (cont.)

7

https://github.com/tensorflow/tflite-micro/blob/main/tensorflow/lite/micro/docs/new_platform_support.md
https://github.com/tensorflow/tflite-micro-arduino-examples/blob/main/scripts/sync_from_tflite_micro.sh
https://github.com/tensorflow/tflite-micro-arduino-examples/blob/main/.github/workflows/sync.yml

Copyright © 2022 Google and BDTI

Arduino Nano 33 BLE Sense Tiny Machine Learning Kit
(with Nano 33 BLE Sense)

TFLM Arduino Examples: Tested Devices

8

Copyright © 2022 Google and BDTI

TFLM Arduino Examples: Easy Install

9

Copyright © 2022 Google and BDTI

TFLM Arduino Examples: hello_world

10

x: 0 ~ 2𝜋

Inference

sin(x)

Copyright © 2022 Google and BDTI

The TFLM arena memory contains:

• Modifiable tensors
• Kernel operator execution graph
• Kernel operator and interpreter data structures

The arena memory is statically allocated within the application:

constexpr int kTensorArenaSize = 2000;

uint8_t tensor_arena[kTensorArenaSize];

Deeper Dive: Arduino hello_world

11

Copyright © 2022 Google and BDTI

tflite::InitializeTarget();

// Set up logging.

static tflite::MicroErrorReporter micro_error_reporter;

error_reporter = µ_error_reporter;

// Map the model into a usable data structure. This doesn't involve any

// copying or parsing, it's a very lightweight operation.

model = tflite::GetModel(g_model);

// This pulls in all the operation implementations we need.

static tflite::AllOpsResolver resolver;

Deeper Dive: Arduino hello_world

12

Copyright © 2022 Google and BDTI

The kernel interpreter needs to be instantiated:

// Build an interpreter to run the model with.

static tflite::MicroInterpreter static_interpreter(

model, resolver, tensor_arena, kTensorArenaSize, error_reporter);

interpreter = &static_interpreter;

Then the kernel interpreter initialization and tensor allocation occurs:

// Allocate memory from the tensor_arena for the model's tensors.

TfLiteStatus allocate_status = interpreter->AllocateTensors();

Deeper Dive: Arduino hello_world

13

Copyright © 2022 Google and BDTI

Now we need access to the input tensor so we can fill it with data:

// Obtain pointer to the model's input tensor.

input = interpreter->input(0);

Since our data is quantized, we need to convert from floating point to int8:

// Quantize the input from floating-point to integer

int8_t x_quantized = x / input->params.scale + input->params.zero_point;

// Place the quantized input in the model's input tensor

input->data.int8[0] = x_quantized;

Deeper Dive: Arduino hello_world

14

Copyright © 2022 Google and BDTI

Time to put the TensorFlow Lite Micro kernel interpreter to work:

// Run inference, and report any error

TfLiteStatus invoke_status = interpreter->Invoke();

if (invoke_status != kTfLiteOk) {

TF_LITE_REPORT_ERROR(error_reporter, "Invoke failed on x: %f\n",

static_cast<double>(x));

return;

}

Deeper Dive: Arduino hello_world

15

Copyright © 2022 Google and BDTI

Finally, we get the output tensor so we can see our inference result:

// Obtain pointer to the model's output tensor.

output = interpreter->output(0);

Since our data is quantized, we need to convert it back to floating point:

// Obtain the quantized output from model's output tensor

int8_t y_quantized = output->data.int8[0];

// Dequantize the output from integer to floating-point

float y = (y_quantized - output->params.zero_point) * output->params.scale;

Deeper Dive: Arduino hello_world

16

Copyright © 2022 Google and BDTI

Arduino IDE serial plotter output:

Deeper Dive: Arduino hello_world

17

Copyright © 2022 Google and BDTI

TFLM Arduino Examples: magic_wand

18

3D IMU Motion Data

Inference

2D Raster Projection (32x32)

0-9 Scores

Copyright © 2022 Google and BDTI

TFLM Arduino Examples: micro_speech

19

PCM Audio

Inference

1 second moving average

Spectrogram

Yes/No/Unknown/Silence

Copyright © 2022 Google and BDTI

• Mobilenet_v1 model
• 31 Kilobytes size
• 470,000 parameters

*Currently supported only in
serial test mode

TFLM Arduino Examples: person_detection

20

Monochrome Image (96x96)

Inference

Person/No-person Scores

Copyright © 2022 Google and BDTI

BDTI contributed a new module, test-over-serial module:

https://github.com/tensorflow/tflite-micro-arduino-examples/tree/main/src/test_over_serial

This module allows inference data to be supplied to TFLM applications over a serial
connection. The module provides application testing, on device, independent of
hardware data acquisition.

A Python script sends data specified by a configuration file, and receives inference
results from the device. This script is suitable for CI automation.

python3 scripts/test_over_serial.py --example person_detection --verbose test

TFLM Arduino Examples: Test Over Serial

21

https://github.com/tensorflow/tflite-micro-arduino-examples/tree/main/src/test_over_serial

BDTI/Google Collaboration:
New Kernels with Porting Guide

Copyright © 2022 Google and BDTI

BDTI ported multiple kernel reference

operators to TFLM from TFLite.

Float32 and Int8 support are

implemented where appropriate.

ADD_N

CAST

CUMSUM

DEPTH_TO_SPACE

DIV

ELU

TFLM Kernel Operators

23

EXP

EXPAND_DIMS

FILL

FLOOR_DIV

FLOOR_MOD

GATHER

GATHER_ND

L2_POOL_2D

LEAKY_RELU

LOG_SOFTMAX

SPACE_TO_DEPTH

Copyright © 2022 Google and BDTI

To minimize RAM usage, TFLM keeps tensor dimension data in non-volatile memory

(flash, ROM, etc). BDTI has contributed a utility function to accommodate kernel

operators that need to modify tensor dimensions. The following kernel operators

use this function:

• SPACE_TO_DEPTH

• DEPTH_TO_SPACE

• GATHER

• L2_POOL_2D

TfLiteStatus CreateWritableTensorDimsWithCopy(TfLiteContext* context,

TfLiteTensor* tensor,

TfLiteEvalTensor* eval_tensor);

Changing Tensor Shape/Dimensions

24

Copyright © 2022 Google and BDTI

• New porting guide added: https://github.com/tensorflow/tflite-

micro/blob/main/tensorflow/lite/micro/docs/porting_reference_ops.md

• Step-by-step explanation with Github Pull Requests from actual kernel operator
port

• FAQ added for common questions on memory allocation by kernel operators

Kernel Operator Porting Guide

25

https://github.com/tensorflow/tflite-micro/blob/main/tensorflow/lite/micro/docs/porting_reference_ops.md

BDTI/Google Collaboration:
GitHub Tooling for Continuous Integration

Copyright © 2022 Google and BDTI

Why GitHub Tooling

27

● In April 2021 we started refactoring the TFLM code from the TensorFlow
repository into a stand-alone TFLM repository.

● Goals for the CI infrastructure included
○ Ability to run tests with various toolchains and a variety of simulated

embedded targets
○ Full visibility into the infrastructure for TFLM’s community contributors
○ Blueprint of a CI setup that could be replicated and customized for TFLM

ports to various hardware and dev boards
○ Reduce the friction in the PR merging process for both contributors and

maintainers

https://github.com/tensorflow/tflite-micro/commit/d96bdbdc61d61d08dc3786d14ffd45597a128a49#diff-b335630551682c19a781afebcf4d07bf978fb1f8ac04c6bf87428ed5106870f5

Copyright © 2022 Google and BDTI

Github Actions

● Wide range of triggers
● Temporary virtual environment
● Large ecosystem of reusable components

CI Components

28

Copyright © 2022 Google and BDTI

GHCR and Docker

● Github Container Repository
● Docker allows easier local testing on developer machines
● Modularizing tests

CI Components

29

Copyright © 2022 Google and BDTI

CI Components

30

An extensive series of

containerized tests

are run against the

PR

Copyright © 2022 Google and BDTI

Mergify

● Merge queue
● Many PRs end up awaiting reviewer approval
● Continues through merge induced test failures

CI Components

31

Copyright © 2022 Google and BDTI

Developer and Maintainer Story

● Raise a PR to the TFLM repository
● Address reviewer comments
● PR gets merged without additional work from the PR authors

○ E.g., no need to update main when a different PR is merged
● Minimal overhead for the repo maintainers

Subtleties

● Security model for PRs from forks takes a bit of study
● Creative workflows were needed to manage security and community

contributions
● Triggers need enhancement

Developer Story and Subtleties

32

Copyright © 2022 Google and BDTI

TensorFlow Lite Micro

https://github.com/tensorflow/tflite-micro

Arduino Examples

https://github.com/tensorflow/tflite-micro-arduino-examples

Contact the TFLM team

https://github.com/tensorflow/tflite-micro#getting-help

Additional Resources

33

2022 Embedded Vision Summit

To see the magic wand demo, stop by
the BDTI booth (#413) on the
Technology Exhibits floor!

https://github.com/tensorflow/tflite-micro
https://github.com/tensorflow/tflite-micro-arduino-examples
https://github.com/tensorflow/tflite-micro#getting-help

Copyright © 2022 Google and BDTI

About BDTI

34

The industry’s trusted source for engineering, analysis, and advice for
embedded AI, deep learning, and computer vision. Specialties include:

● Algorithm design and implementation
● Processor selection
● Development tool and processor evaluations
● Training and coaching on embedded AI technology

Come see us in Booth 413!

