TensorFlow Lite for Microcontrollers: Recent Developments

Advait Jain
Staff Software Engineer
Google

David Davis
Senior Embedded Software Engineer
BDTI

John Withers
Automation and Systems Engineer
BDTI
Outline

• 10,000-foot view of TensorFlow Lite Micro
• BDTI/Google Collaboration
 • Updated Arduino port of TFLM
 • New Kernel Operators
 • Improved CI via GitHub Actions
TensorFlow Family (10,000-Foot view)

- TensorFlow (platform & ecosystem)
 - End-to-end open source platform for machine learning
 - Comprehensive, flexible ecosystem of tools, libraries and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML powered applications

- TensorFlow (library)
 - The core open source library to help you develop and train ML models

- TensorFlow Lite
 - Library for deploying models on mobile, microcontrollers and other edge devices

- TensorFlow Lite Micro (TFLM)
 - Library to run machine learning models on DSPs, microcontrollers, and other embedded targets with a small memory footprint and very low power usage
TensorFlow Lite Micro (10,000-Foot View)

- Library designed to run machine learning models on embedded targets without any OS support, no dynamic memory allocation and a reduced set of C++11 standard libraries
- Leverages the model optimization tools from the TensorFlow ecosystem and has additional embedded-specific offline and online optimizations to reduce the memory footprint from both the model and the framework
- Integrates with a number of community contributed highly-optimized hardware-specific kernel implementations
- All the TFLM modules are tested on a variety of targets and toolchains via software emulation for each pull request to the TFLM GitHub repository
- TFLM provides tools, CI, and examples for how to integrate it into various embedded development environments
BDTI/Google Collaboration: Updated TFLM Port to Arduino
Google and BDTI have created a new repository with platform specific example code for the Arduino Nano 33 BLE Sense.

The code base is synchronized nightly from the TFLM repository using Github workflows.

All example applications are independently maintained within the Arduino examples repository.

Includes support for CMSIS_NN.

Code in this repository can be used with both the Arduino IDE and CLI. With single step Git cloning of the repository into the Arduino library folder, TFLM is ready for use.
Repository adheres to this guideline document:

Nightly synchronization script and workflow:

TFLM Arduino Examples: Tested Devices

Arduino Nano 33 BLE Sense

Tiny Machine Learning Kit (with Nano 33 BLE Sense)
TFLM Arduino Examples: Easy Install

download, install and start the Arduino IDE
TFLM Arduino Examples: hello_world

Inference

\[x: 0 \sim 2\pi \]

\[\sin(x) \]
The TFLM arena memory contains:

- Modifiable tensors
- Kernel operator execution graph
- Kernel operator and interpreter data structures

The arena memory is statically allocated within the application:

```cpp
constexpr int kTensorArenaSize = 2000;
uint8_t tensor_arena[kTensorArenaSize];
```
tflite::InitializeTarget();

// Set up logging.
static tflite::MicroErrorReporter micro_error_reporter;
error_reporter = µ_error_reporter;

// Map the model into a usable data structure. This doesn't involve any
// copying or parsing, it's a very lightweight operation.
model = tflite::GetModel(g_model);

// This pulls in all the operation implementations we need.
static tflite::AllOpsResolver resolver;
The kernel interpreter needs to be instantiated:

```cpp
// Build an interpreter to run the model with.
static tflite::MicroInterpreter static_interpreter(
    model, resolver, tensor_arena, kTensorArenaSize, error_reporter);
interpreter = &static_interpreter;
```

Then the kernel interpreter initialization and tensor allocation occurs:

```cpp
// Allocate memory from the tensor_arena for the model's tensors.
TfLiteStatus allocate_status = interpreter->AllocateTensors();
```
Now we need access to the input tensor so we can fill it with data:

```c
// Obtain pointer to the model's input tensor.
input = interpreter->input(0);
```

Since our data is quantized, we need to convert from floating point to int8:

```c
// Quantize the input from floating-point to integer
int8_t x_quantized = x / input->params.scale + input->params.zero_point;
// Place the quantized input in the model's input tensor
input->data.int8[0] = x_quantized;
```
Time to put the TensorFlow Lite Micro kernel interpreter to work:

```cpp
// Run inference, and report any error
TfLiteStatus invoke_status = interpreter->Invoke();
if (invoke_status != kTfLiteOk) {
  TF_LITE_REPORT_ERROR(error_reporter, "Invoke failed on x: %f\n",
                       static_cast<double>(x));
  return;
}
```
Finally, we get the output tensor so we can see our inference result:

```
// Obtain pointer to the model's output tensor.
output = interpreter->output(0);
```

Since our data is quantized, we need to convert it back to floating point:

```
// Obtain the quantized output from model's output tensor
int8_t y_quantized = output->data.int8[0];
// Dequantize the output from integer to floating-point
float y = (y_quantized - output->params.zero_point) * output->params.scale;
```
Deeper Dive: Arduino hello_world

Arduino IDE serial plotter output:
TFLM Arduino Examples: magic_wand

3D IMU Motion Data

2D Raster Projection (32x32)

Inference

0-9 Scores
TFLM Arduino Examples: micro_speech

PCM Audio

Spectrogram

Inference

1 second moving average

Yes/No/Unknown/Silence

Input

Convolution
weights [1, 10, 8, 8]
bias [8]

[1, 25, 20, 8]

Fully Connected
weights [4, 4000]
bias [4]

[1, 4]

Softmax

Output
Monochrome Image (96x96) → Inference → Person/No-person Scores

- Mobilenet_v1 model
- 31 Kilobytes size
- 470,000 parameters

*Currently supported only in serial test mode
BDTI contributed a new module, test-over-serial module:

This module allows inference data to be supplied to TFLM applications over a serial connection. The module provides application testing, on device, independent of hardware data acquisition.

A Python script sends data specified by a configuration file, and receives inference results from the device. This script is suitable for CI automation.

python3 scripts/test_over_serial.py --example person_detection --verbose test
BDTI/Google Collaboration: New Kernels with Porting Guide
BDTI ported multiple kernel reference operators to TFLM from TFLite. Float32 and Int8 support are implemented where appropriate.

ADD_N EXP
CAST EXPAND_DIMS
CUMSUM FILL
DEPTH_TO_SPACE FLOOR_DIV
DIV FLOOR_MOD
ELU GATHER
 GATHER_ND
 L2_POOL_2D
 LEAKY_RELU
 LOG_SOFTMAX
 SPACE_TO_DEPTH
To minimize RAM usage, TFLM keeps tensor dimension data in non-volatile memory (flash, ROM, etc). BDTI has contributed a utility function to accommodate kernel operators that need to modify tensor dimensions. The following kernel operators use this function:

• SPACE_TO_DEPTH
• DEPTH_TO_SPACE
• GATHER
• L2_POOL_2D

```c
TfLiteStatus CreateWritableTensorDimsWithCopy(TfLiteContext* context,
                                           TfLiteTensor* tensor,
                                           TfLiteEvalTensor* eval_tensor);
```
Kernel Operator Porting Guide

- Step-by-step explanation with Github Pull Requests from actual kernel operator port
- FAQ added for common questions on memory allocation by kernel operators
BDTI/Google Collaboration: GitHub Tooling for Continuous Integration
● In April 2021 we started refactoring the TFLM code from the TensorFlow repository into a stand-alone TFLM repository.

● Goals for the CI infrastructure included
 ○ Ability to run tests with various toolchains and a variety of simulated embedded targets
 ○ Full visibility into the infrastructure for TFLM’s community contributors
 ○ Blueprint of a CI setup that could be replicated and customized for TFLM ports to various hardware and dev boards
 ○ Reduce the friction in the PR merging process for both contributors and maintainers
Github Actions

- Wide range of triggers
- Temporary virtual environment
- Large ecosystem of reusable components
CI Components

GHCR and Docker

- Github Container Repository
- Docker allows easier local testing on developer machines
- Modularizing tests
An extensive series of containerized tests are run against the PR.
Mergify

- Merge queue
- Many PRs end up awaiting reviewer approval
- Continues through merge induced test failures
Developer and Maintainer Story

- Raise a PR to the TFLM repository
- Address reviewer comments
- PR gets merged without additional work from the PR authors
 - E.g., no need to update main when a different PR is merged
- Minimal overhead for the repo maintainers

Subtleties

- Security model for PRs from forks takes a bit of study
- Creative workflows were needed to manage security and community contributions
- Triggers need enhancement
Additional Resources

TensorFlow Lite Micro
https://github.com/tensorflow/tflite-micro

Arduino Examples
https://github.com/tensorflow/tflite-micro-arduino-examples

Contact the TFLM team
https://github.com/tensorflow/tflite-micro#getting-help

2022 Embedded Vision Summit

To see the magic wand demo, stop by the BDTI booth (#413) on the Technology Exhibits floor!
About BDTI

The industry’s trusted source for engineering, analysis, and advice for embedded AI, deep learning, and computer vision. Specialties include:

- Algorithm design and implementation
- Processor selection
- Development tool and processor evaluations
- Training and coaching on embedded AI technology

Come see us in Booth 413!