

Accelerate All Your Algorithms with the Quadric q16 Processor

Daniel Firu Co-founder & CPO quadric.io

Software 2.0 – ML Inference + Traditional Code

- Machine Learning is infiltrating nearly all applications
- Augmenting, not replacing, traditional application code
- Example: object detection pipeline:

Decoding	Detection	NMS
3ms	2ms	9ms
Image Processing Unit	NPU	CPU
(MIPS)	(TOPS)	(MIPS)

 Almost everywhere DSPs are traditionally used today – vision, audio/sound, communications, sensors/radar

How SoCs Address Software 2.0 Challenge Today

Heterogenous Multicore SoCs

Conceptual block diagram of a Smart Camera SoC

- NPU "Accelerators" (Matrix)
 - High efficiency
 - Limited operator support
- DSPs (Vector)
 - Good math kernel performance. Run traditional DSP code & some NN operators
 - Often weak for control code
 - Unfamiliar programming environment
- Embedded Control CPU (Scalar)
 - Orchestration of the real-time subsystem
 - "Operator fallback" Easy to program
 - The failsafe to future-proof the system as NNs evolve
 - But <u>very low</u> ML performance

Drawbacks to Current SoC Architectures

Heterogenous Multicore SoCs

Conceptual block diagram of a Smart Camera SoC

- System complexity / power
 - Hardware integration of multiple cores
 - Memory bandwidth sharing across cores
 - System power waste data paging through external memory
- Programming complexity
 - Synchronization between cores
 - 2 or 3 toolchains (debug, performance tuning)
 - End OEM programmer accesses only the Real-Time CPU (under-used potential)
- Accelerator "brittleness"
 - Many NN accelerators have limited operator support
 - Leads to lower-performance "fallback" onto the DSP or CPU

Quadric GPNPU: Hybrid DSP + NN Graph Processor

- One architecture for inference plus pre- & post-processing
- NN graphs and C++ code merged into a single code stream
- Matrix + vector + scalar code in a single, unified architecture

Quadric GPNPU Advantages

- System Simplicity
 - Only one multipurpose core to integrate
 - Memory bandwidth optimized by single unified compiler / scheduler
 - Lower power intermediate data sharing between C++ and NN code sections
- Programming Simplicity
 - One toolchain for scalar+vector+matrix
 - Single debug of C++ and NN graph code
 - End-OEM programmer accesses 100% of the machine compute power
- Ultimate Future Proof Flexibility
 - New NN graph operators added with C++ kernels
 - New DSP libraries added w/ C++ code
 - Anything you can write in C++ will run

Quadric GPNPU Processor Architecture

Silicon Proven GPNPU: Quadric Processor

LPDDR4 and PCIE Interfaces

256 Vortex Core **GPNPU** Instance

Quadric Developer Kit

Silicon Proven available for evaluation now

Quadric SDK: Unified Software Toolchain

Neural Backbone S Libraries Code Tools KEY

Quadric Developer Studio

13

Smart Physical Access: On-Device Detection and Authorization

Computational On-Device Bokeh

Tiny Yolo v3 Application Use Case

17

Tiny Yolo v3 Performance Comparison

embedded VISION summit

- When deploying algorithms, total algorithm pipeline performance is key
- Quadric's GPNPU accelerates the entire pipeline, resulting in the best total performance

Conclusion

- Quadric develops GPNPU Processor IP technology
- The Quadric SDK enables the development of complex high-performance application pipelines that are a mix of both Neural and C++ Vector / Matrix Code
- Experience our technology on the Quadric Developer Studio!
 - studio.quadric.io

Resources

HW / Product Resources

Architecture Information

quadric.io/technology/architecture

The Quadric Developer Studio

studio.quadric.io

Software Information

quadric.io/technology/sdk

docs.quadric.io

2022 Embedded Vision Summit

Visit us at our booth!

Booth #521

