embedded VISION summit

Fundamentals of Training AI Models for Computer Vision and Video Analytics Applications, Part 1

Ekaterina Sirazitdinova Data Scientist NVIDIA

Agenda

- AI and deep learning for vision processing
 - Embedded vison use cases
- Deep learning mechanism
 - How it works and how neural networks learn and how to prepare data for a supervised training
- Possible problems during training and their mitigation
 - Observing training behaviour and reacting accordingly
- Formulating a vison task as a deep learning problem
 - Kinds of tasks solved by deep learning in computer vision and video analytics
- Where to start
 - Deep learning frameworks and community resources

AI and Deep Learning for Vision Processing

AI & Deep Learning are Changing the World

Robotics Manufacturing, construction, navigation

Healthcare Cancer detection, drug discovery, genomics Autonomous Vehicles Pedestrian & traffic sign detection, lane tracking

Internet Services Image classification, speech recognition, NLP

Media & Entertainment Digital content creation

Intelligent Video Analytics Al cities, urban safety

embedded

Embedded Al Applications: Industrial Inspection

embedded

VISION summit

© 2022 NVIDIA

embedded VISION summit

Embedded Al Applications: Agriculture

embedded VISION summit

Embedded Al Applications: Healthcare

© 2022 NVIDIA

Deep Learning Mechanism

_ _ _ _ _ _ _ _ _

How Does Deep Learning Work?

A Simpler Case: Linear Model

Weights and *biases* are the learnable parameters of a machine learning model

embedded

VISION

From Neuron to Network

 \bigcirc

NVIDIA.

$$z = x_1 w_1 + \dots + x_n w_n$$

Supervised and Unsupervised Learning

Supervised methods

- Defined by its use of labelled datasets
- Two problem types: *classification* and *regression*

Unsupervised methods

- Analyze and cluster unlabelled data sets
- Discover hidden patterns in data
- No need for human intervention

embedded

VISION

Preparing Datasets for Supervised Training

- Acquiring *enough* data
- Ground truth labelling
- Balancing classes
- Splitting data into *training*, *validation* and *testing* sets

embedded

VISION

Forward Pass and Activations

Loss Function: Calculating the Total Error

embedded

Function Optimization

© 2022 NVIDIA

Gradient Descent and Hyperparameters

- Gradient: which direction loss
 decreases the most
- Learning rate: how far to travel
- Step: an update to the weight parameters
- Epoch: a model update with the full dataset
- Batch: a sample of the full dataset
- Momentum: accelerates the optimization process

embedded

VISION

Popular Optimizers

Animation credit: https://github.com/Jaewan-Yun/optimizer-visualization

embedded

Backpropagation: Update Each of the Weights in the Network

embedded

Backpropagation: Update Each of the Weights in the Network

embedded

Neural Network: Math Behind (Matrix Form)

• Forward pass

$x_i = f_i(W_i x_{i-1})$

$$E = \left\| x_L - y \right\|_2^2$$

Backward pass

$$\delta_L = (x_L - y) \circ f'_L(W_L x_{L-1})$$
$$\delta_i = W_{i+1}^T \delta_{i+1} \circ f'_i(W_i x_{i-1})$$

Here • is the Hadamard (element-wise) product

Weight update

$$\frac{\partial E}{\partial W_i} = \delta_i x_{i-1}^T$$

$$W_i = W_i - \alpha_{W_i} \circ \frac{\partial E}{\partial W_i}$$

L – number of network layers x_0 – input vector; x_L – output vector E – loss $W_{\overline{1,L}}$ – weight matrices $f_{\overline{1,L}}$ – activation functions α_{W_i} – weight scalar

embedded

VISION

embedded VISION summit

Fundamentals of Training AI Models for Computer Vision and Video Analytics Applications, Part 2

Ekaterina Sirazitdinova Data Scientist NVIDIA

Training Visualization: Loss Curves

https://tensorboard.dev/

© 2022 NVIDIA

embedded VISION

Transfer Learning

Train the same model with another dataset:With different distribution of classesWith different classes

Objective:

- Model repurposing (brand new classes, different modalities, scene adaptation)
- Extending the model to new classes

Train the model with the remaining $\sim 10\%$

During re-training:

- Smaller learning rate
- Freezing some layers

Objective: increased accuracy

Possible Problems During Training, and Their Mitigation

Underfitting – Just Right – Overfitting

📀 NVIDIA.

embedded

Preventing Over- and Underfitting

With the help of data

- Add more examples
- Check that your data set is balanced
- Use a separate test set
- Apply data augmentation

Applying techniques

- Early stopping / increasing number of epochs
- Changing network complexity
- Regularization
 - Pruning
 - Dropout
 - Loss penalty (L1 and L2)
- Ensembling
- Transfer learning

embedded

Data Augmentation: Improve Accuracy with Limited Dataset

embedded

VISION

Synthetic Data Generation

Formulating a Vision Task as a Deep Learning Problem

Convolutional Networks

Regression Problem

- Predict a real-value quantity
- **Output layer configuration**: one node with a linear activation unit
- Loss function: mean squared error (MSE)

Example: regression of key-points for human pose estimation in 2D

embedded

VISION

Binary Classification Problem

- Classify an example as belonging to one of two classes
- **Output layer configuration**: one node with a *sigmoid* activation unit
- Loss function: binary cross-entropy (logarithmic) loss

Example: identifying whether a patient has pneumonia or not

embedded

VISION

Multi-Class Classification Problem

- Classify an example as belonging to one of more than two classes
- **Output layer configuration**: one node for each class using the *softmax* activation function
- Loss function: categorical cross-entropy (logarithmic) loss

Example: identifying which body part an x-ray image represents

embedded

VISION

Detection Problem

- Detect boundaries of objects belonging to the classes of interest
- Popular architectures:
 - YOLOv3, YOLOv4
 - SSD
 - Faster RCNN
 - RetinaNet

Example: finding locations of all persons and bags in the scene

embedded

Segmentation Problem

- Detect contours of objects belonging to the classes of interest
- **Types:** *semantic* and *instance* segmentations
- Popular architectures:
 - U-net
 - Mask-RCNN

Example: finding precise contours of all persons in the scene

embedded

= = _

Where to Start?

.

Deep Learning Frameworks

embedded

VISION

Summary: In this Talk You Have Learned

- What is a neural network and what does it mean to train it?
- What are important steps of deep learning training process and parameters affecting it?
- What can go wrong, and how to make it right
- How to prepare your data for training
- How to formulate a deep learning problem
- What public resources you can use to master deep learning

embedded

summi

VISIO

Resources: Learning

Community resources

Kaggle

https://www.kaggle.com/

Papers with code

https://paperswithcode.com/

MLPerf

https://mlperf.org/

From the industry and academy

Google AI Education

https://ai.google/education/

Machine learning course by Stanford (Coursera)

https://www.coursera.org/lear n/machine-learning

NYU Deep Learning

https://cds.nyu.edu/deeplearning/ **AI Conferences**

NeurIPS

https://nips.cc/

CVF conferences

https://openaccess.thecvf.com

ICML

https://icml.cc/

Resources: NVIDIA

Resources

NVIDIA Technical Blog

https://developer.nvidia.com/blog/

Deep Learning Institute

https://www.nvidia.com/en-us/training/

NGC Software Hub

https://catalog.ngc.nvidia.com/

"NVIDIA Tools" at 2022 Embedded Vision Summit

May 18

1:30pm - 2:00pm **"Accelerating the Creation of Custom, Production-Ready AI Models for Edge AI"** by Akhil Docca

2:05pm - 2:35pm **"Vision AI At the Edge:** From Zero to Deployment Using Low-Code Development" by Alvin Clark

