embedded VISION sumnt

MLOps: Managing Data and Workflows for Efficient Model Development and Deployment

Konstantinos Balafas – Head of AI Data Carlo Dal Mutto – Director of Engineering Acubed by Airbus

ML Ops and Data Ops

.

embedded VISION summit

MLOPS

Discipline that comprises a set of tools and principles to support progress through the lifecycle of a ML project

AN AIRBUS INNOVATION CENTER

ML Project Lifecycle

embedded

VISION summit

© 2022 Airbus

Is the project providing any business value? Ο What system performances would make the business viable? Ο

System requirements

Understand if the problem is **technically achievable**

- Establish a baseline and confirm that system requirements can be achieved
 - Human level performance (HLP) Ο
 - Literature search Ο
 - Quick and dirty implementation Ο

If HLP is not satisfactory, improve the considered sensors or the instruction to the humans

5

Project Scoping

Fundamental questions:

Understand if there is **business value**

AN AIRBUS INNOVATION CENTER

Data are first-class citizens in data-centric AI

New trend: big data \rightarrow good data

Which data

Data

- Raw vs processed data
- Metadata
 - Provenance: where the data came from \bigcirc
 - Lineage: which are the processing steps applied to the data Ο

embedded VISION

summit

Test dataset

Data

embedded

VISION

Data

Data pipeline - Key challenges

While automation steps are possible, it is very difficult to remove manual steps entirely from this loop

© 2022 Airbus

embedded

VISION

Modeling

AN AIRBUS INNOVATION CENTER

$\textbf{Model-centric AI development} \rightarrow \textbf{data-centric AI development}$

Model development preliminary steps

- 1. Define development set, then split it into training and validation set
- 2. Define business-centric and model-centric metrics
 - Account for data distribution artifacts (skewness, unbalancing, fairness...)

Model development main steps

Deployment

Types of deployment

- New product/problem capability
- Automate/assist human
- Replace a previous model/pipeline

Gradual deployment \rightarrow progressively increase amount of automation

Monitoring

- Define which metrics should be tracked during deployment
- Implement monitoring dashboards (manage under- vs over-monitoring)
- Pipeline monitoring. For each component monitor: input metrics, output metrics, software metrics

embedded VISION

Post-Deployment

embedded

VISION summit

Problem Statement

- Develop a vision-based perception system for autonomous flight
- Development streams
 - Sensing development (cameras, radars, INSs)
 - SW development
 - Perception development (including ML)

embedded VISION

Autonomous Landing

- Goal: vision-based equivalent of the Instrument Landing System (ILS)
- INPUT: images, database of airport locations
- OUTPUT: position of the aircraft wrt the runway

embedded

VISION summit

ML Ops and Data Ops at Wayfinder

.

ML Ops and Data Ops

Data Ops

- Image quality analysis
- Image annotation
- Dataset/label versioning
- Data consumption and "insights"

ML Ops

- Train/validate/test split
- Model versioning
 - efficient experiment tracking
 - Verification & Validation
- Model monitoring

embedded

VISION

Image Quality Analysis

- Need to determine whether an image is suitable for training (or testing!) before an image is included in an ML-bound dataset
- Leveraging "classical" CV techniques (e.g. brightness, contrast)
- Exploit model predictions/confidence as an additional dimension

embedded VISION

Need to scale to millions of images Solution

Very high accuracy requirements

- Leverage an ensemble of:
 - Classical CV techniques
 - Machine learning models
 - Human annotation
- Establish both a per-image and per-algorithm "quality" metric
- Develop a dense 3D database of airport features

Need to calculate ground truth for model training

Image Annotation

Requirements

Ο

Ο

AN AIRBUS INNOVATION CENTER

Image Annotation Pipeline

embedded

VISION summit

Dataset/Label Versioning

- Data versioning is important for Verification and Validation of our autonomous flight system
 - Images used for training different ML versions and modules
 - Labels denoting ground truth
- Leveraging logging of runs of the aforementioned pipeline to ensure traceability of our labels
- Development of a similar "delivery" pipeline for versioning datasets
 - Consider datasets "immutable"

embedded VISION

Data Consumption and Insights

- Collected data has value beyond ML
- Enable data-driven decisions across Wayfinder
 - Data labeling
 - Future data collection
 - Systems-level requirements
- Developing purpose-built dashboards

embedded VISION

ML Ops: Pre-Deployment

- Train/validate/test split
 - Account for sequential nature of data
 - Ensure similar distributions of key

features across sets

- Ensure sufficient coverage across operational envelope
- Model versioning
 - Efficient experiment tracking
 - V&V efforts

embedded VISION

ML Ops: Post-Deployment

- Model is evaluated on a per-project pre-defined test set that has been curated to meet system requirements
- Monitoring Constraints
 - Ground truth is unavailable "online"
 - Expected large volumes of diverse data arriving in multiple batches
- Moving forward
 - Establish an annotation and evaluation strategy
 - Objective is to maximize diversity of a continuously growing evaluation set based on
 - Image content
 - Key metadata "dimensions" (e.g. airports, weather conditions, aircraft position, etc.)

embedded

Conclusions

There are several operational and conceptual challenges associated with ML and Data Ops

- Labeling
- Data curation
- Monitoring

We try to address them by:

- Breaking down the data life-cycle in semantic stages
- Organizing our code in modular pipelines
- Leveraging both classical and ML-based Computer Vision algorithms
- Automating the different pipeline steps to the extent possible

embedded VISION

