12+ Image Quality Attributes that Impact Computer Vision

Max Henkart
Imaging Optics & Camera Engineer, Founder
Commonlands LLC
Overview

• Intro
• Types of image quality
• Review image quality metrics and the impact on CV
• Summary
Image quality and computer vision require experts from multiple industries

- Illumination & Object Characteristics
- Lens and Alignment
- Sensor & Image Capture
- Electronics
- Digital Image Processing
- Computer Vision
- Analytics, Localization, Prediction, etc.

Optical + Mech Engineering

Electrical + Firmware + Image Quality Engineering

Software Engineering
Image quality in the field is fundamental to embedded computer vision performance

<table>
<thead>
<tr>
<th>AllConv</th>
<th>NiN</th>
<th>VGG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAR(99.7%)</td>
<td>FROG(99.9%)</td>
<td>AIRPLANE(85.3%)</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOG(88.0%)</td>
<td>AIRPLANE(62.7%)</td>
<td>DOG(78.2%)</td>
</tr>
</tbody>
</table>

Fig. 1. One-pixel attacks created with the proposed algorithm that successfully fooled three types of DNNs trained on CIFAR-10 dataset: The All convolutional network (AllConv), Network in network (NiN) and VGG. The

Su, et. al. “One Pixel Attack for Fooling Deep Neural Networks”
Image quality in the field is fundamental to embedded computer vision performance.

“Nonetheless, we show some examples of situations where nearly imperceptible image modifications can result in dramatic perception changes.

Even in applications without malicious people trying to trick your system, the natural world may be adversarial enough.”

Su, et. al. “One Pixel Attack for Fooling Deep Neural Networks”

Pezzementi, et. al “Putting Image Manipulations in Context: Robustness Testing for Safe Perception”
Two types of purpose-based image quality metrics are required to fully characterize an image.

Objective
- Independent of preference
- Measurements with image quality test charts

Subjective
- Dependent on preference
- Measurements through focus groups and other user feedback methods

- “SNR = 70db”
- “eSFR = 20%@100lp/mm”
- “ΔE = 2”

- “Too Grainy”
- “Too Blurry”
- “Not Colorful”
Objective and subjective were coined before modern embedded vision systems

Engineering-Based

- Inputs are related to test charts, camera hardware, and image processing.
- Independent of scene content and human visual quality assessment.

“Objective Image Quality”

Computational-Based

- Inputs are related to human visual cognition such as structure and color.
- Includes content-aware image processing.
- Directly related to image saliency in embedded computer vision.

“Subjective Image Quality”

Let’s investigate how objective image quality metrics could impact your computer vision

1. Exposure + Motion Blur
2. Dynamic Range + Artifacts
3. Noise
4. Color
5. Shading
6. Resolution
7. Distortion
8. Texture Blur
9. Stray Light
10. Fringing + Blooming
11. Blemish
12. Dead Pixels
Exposure index combines the scene, lens, exposure length, gain, and image processing

Related KPI

- Exposure Value (EV)

Reference: ISO12232

![Exposure Value (EV)](image)

Blasinski, etc. al. “Optimizing Image Acquisition Systems for Autonomous Driving”
Motion blur is created by long exposure and/or imperfect high-dynamic range recombination.

<table>
<thead>
<tr>
<th>Blur Length</th>
<th>Angular shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 0)</td>
<td></td>
</tr>
<tr>
<td>(0, 0)</td>
<td>81.0</td>
</tr>
<tr>
<td>(15, 15)</td>
<td>70.8</td>
</tr>
<tr>
<td>(20, 20)</td>
<td>67.1</td>
</tr>
<tr>
<td>(25, 25)</td>
<td>60.0</td>
</tr>
<tr>
<td>(30, 30)</td>
<td>55.4</td>
</tr>
<tr>
<td>(35, 35)</td>
<td>47.2</td>
</tr>
<tr>
<td>(40, 40)</td>
<td>44.5</td>
</tr>
</tbody>
</table>

Fig. 5. Activations of hidden layers of CNN on image classification. From left to right are input images, and the activations at pool1, pool2, pool3, pool4, and pool5 layers, respectively.

Pei, et. al. “Effects of Image Degradations to CNN-based Image Classification”
Let’s investigate how objective image quality metrics could impact your computer vision

1. Exposure + Motion Blur
2. **Dynamic Range + Artifacts**
3. Noise
4. Color
5. Shading
6. Resolution
7. Distortion
8. Texture Blur
9. Stray Light
10. Fringing + Blooming
11. Blemish
12. Dead Pixels
Camera dynamic range is the ratio of maximum to minimum signal, before saturation occurs

Related KPI
- Dynamic Range (dB)

Reference: ISO21550

Hasinoff, et. al. “Burst photography for high dynamic range and low-light imaging on mobile cameras”
Even modern HDR techniques can introduce other image quality artifacts

Figure 2: Common HDR multiplexing artifacts. Crops (a) and (b): ghosting. Crop (c): SNR discontinuity.
Let’s investigate how objective image quality metrics could impact your computer vision

1. Exposure + Motion Blur
2. Dynamic Range + Artifacts
3. **Noise**
4. Color
5. Shading
6. Resolution
7. Distortion
8. Texture Blur
9. Stray Light
10. Fringing + Blooming
11. Blemish
12. Dead Pixels

© 2022 Commonlands LLC
Noise is split into single pixel (temporal /random) and multi-pixel (spatial/pattern)

Related KPIs

- Signal-to-Noise Ratios (multiple types)
- Noise Power Spectrum (Frequency)

Reference: ISO15739

<table>
<thead>
<tr>
<th>Noise</th>
<th>Caffe</th>
<th>VGG-CNN-S</th>
<th>GoogleNet</th>
<th>VGG16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.439129</td>
<td>0.496755</td>
<td>0.123831</td>
<td>0.00186453</td>
</tr>
<tr>
<td>VGG-CNN-S</td>
<td>0.354262</td>
<td>0.612398</td>
<td>0.444991</td>
<td>0.0499469</td>
</tr>
<tr>
<td>GoogleNet</td>
<td>0.546162</td>
<td>0.287545</td>
<td>0.130923</td>
<td>0.0513721</td>
</tr>
<tr>
<td>VGG16</td>
<td>0.406895</td>
<td>0.336332</td>
<td>0.48098</td>
<td>0.280146</td>
</tr>
</tbody>
</table>

Fig. 3: Example distorted images. For each image we also show the output of the soft-max unit for the correct class. This output corresponds to the confidence the network has of the considered class. For all networks and for all distortions this confidence decreases as the image quality decreases.

Dodge, et. al. “Understanding How Image Quality Affects Deep Neural Networks”
Let’s investigate how objective image quality metrics could impact your computer vision

1. Exposure + Motion Blur
2. Dynamic Range + Artifacts
3. Noise
4. **Color**
5. Shading
6. Resolution
7. Distortion
8. Texture Blur
9. Stray Light
10. Fringing + Blooming
11. Blemish
12. Dead Pixels
Color can impact edge contrast when using multiple channels and auto-white balance

Related KPI

• ΔE (Color Accuracy)

Reference: ISO17321

Figure 1. The effect of correct/incorrect computational color constancy (i.e., white balance) on (top) classification results by ResNet [29]; and (bottom) semantic segmentation by RefineNet [39].

Dynamic range and color are closely related to tone mapping which impacts perception at every scale.

Related KPI

- Contrast Detection Probability

Reference: ISO12232

Yeganeh, et. al. “Objective Quality Assessment of Tone-Mapped Images”
Let’s investigate how objective image quality metrics could impact your computer vision.

1. Exposure + Motion Blur
2. Dynamic Range + Artifacts
3. Noise
4. Color
5. Shading
6. Resolution
7. Distortion
8. Texture Blur
9. Stray Light
10. Fringing + Blooming
11. Blemish
12. Dead Pixels
Related KPIs

- Luminance Non-uniformity
- Lightness non-uniformity

Reference: ISO17957

Marc Levoy, ICCV 2015, “Extreme imaging using cell phones”
Shading can include a radial color shift, impacting CV in different parts of the field
Let’s investigate how objective image quality metrics could impact your computer vision

1. Exposure + Motion Blur
2. Dynamic Range + Artifacts
3. Noise
4. Color
5. Shading
6. **Resolution**
7. Distortion
8. Texture Blur
9. Stray Light
10. Fringing + Blooming
11. Blemish
12. Dead Pixels
Resolution comes in many flavors
All types of resolution jointly impact the performance of embedded vision systems

Fig. 1. 3D human shape and pose estimation from a low-resolution image captured from a real surveillance video. SOTA method [25] that works well for high-resolution images performs poorly at low-resolution ones.

SOTA=State of the art as of Q1’20: “SPIN”

Xu, et. al. “3D Human Shape and Pose from a Single Low-Resolution Image with Self-Supervised Learning”
The Spatial Frequency Response (SFR) and contrast sensitivity are a corollary to “blur”

Related KPIs

- Edge SFR (eSFR), sinusoidal SFR (sSFR)
- Lens MTF
- Contrast Sensitivity Function (CSF)
- Contrast Detection Probability (CDP)

Reference: ISO12233, IEEE P2020

Figure 5. Semantic segmentation results on sharp and blurred images using the Zoc

Vasiljevic, et. Al. “Examining the Impact of Blur on Recognition by Convolutional Networks”

© 2022 Commonlands LLC
SFR can also characterize 10+ artifacts resulting from image compression quality

Example of Artifacts

- Aliasing
- Ringing
- Blocking

Figure 1: Near-duplicate images can confuse state-of-the-art neural networks due to feature embedding instability. Left and middle columns: near-duplicates with small (left) and large (middle) feature distance. Image A is the original, image B is a JPEG version at quality factor 50. Right column: a pair of dissimilar images. In each column we display the pixel-wise difference of image A and image B, and the feature distance D [13]. Because the feature dis-

Zheng, et. Al “Improving the Robustness of Deep Neural Networks via Stability Training”
Angular resolution defines the # of pixels each object has for feature extraction

Related KPIs

- # Pixels per °
- # Pixels per unit distance across an object

Fig. 12. Performance as a function of scale. All detectors improve rapidly with increasing scale, especially MULTI-FTR+MOTION, HOG LBP and LAT SVM-V2 which utilize motion, texture and parts, respectively. At small scales state-of-the-art performance has considerable room for improvement.

Let’s investigate how objective image quality metrics could impact your computer vision

1. Exposure + Motion Blur
2. Dynamic Range + Artifacts
3. Noise
4. Color
5. Shading
6. Resolution
7. **Distortion**
8. Texture Blur
9. Stray Light
10. Fringing + Blooming
11. Blemish
12. Dead Pixels
Related KPI

- % Distortion (Optical, TV, SMIA TV)

Reference: ISO17850

Distortion is the change in angular resolution (magnification) across field

Pei, et. al. “Effects of Image Degradations to CNN-based Image Classification”

Angular resolution and perspective distortion at 45° Off Axis
Related KPI

- % Distortion (Optical, TV, SMIA TV)

Reference: ISO17850

Distortion is the change in angular resolution (magnification) across field

Angular resolution and perspective distortion at 45° Off Axis
Distortion is the change in angular resolution (magnification) across field

Related KPI
• % Distortion (Optical, TV, SMIA TV)

Reference: ISO17850

Let’s investigate how objective image quality metrics could impact your computer vision

1. Exposure + Motion Blur
2. Dynamic Range + Artifacts
3. Noise
4. Color
5. Shading
6. Resolution
7. Distortion
8. Texture Blur
9. Stray Light
10. Fringing + Blooming
11. Blemish
12. Dead Pixels
Texture SFR (and loss) results from noise reduction algorithms that filter high frequencies

Related KPI
- Texture SFR

Reference: ISO19567

Let’s investigate how objective image quality metrics could impact your computer vision

1. Exposure + Motion Blur
2. Dynamic Range + Artifacts
3. Noise
4. Color
5. Shading
6. Resolution
7. Distortion
8. Texture Blur

9. **Stray Light**
10. Fringing + Blooming
11. Blemish
12. Dead Pixels
Stray light from lenses create regions of low contrast and low detection probability

Related KPIs

- Glare spread function
- Contrast detection probability

Reference: ISO18844

NOTE—Two sequential video frames while entering a tunnel that demonstrate contrast reduction by veiling glare, caused by sunlight illuminated dust particles. In the left image, the effect significantly hinders the recognition of a preceding car while in the right image (only a few milliseconds later) the sunlight is blocked away and a robust detection of the car is possible.
Let’s investigate how objective image quality metrics could impact your computer vision

1. Exposure + Motion Blur
2. Dynamic Range + Artifacts
3. Noise
4. Color
5. Shading
6. Resolution
7. Distortion
8. Texture Blur
9. Stray Light
10. Fringing + Blooming
11. Blemish
12. Dead Pixels
Chromatic aberration from lenses can result in artifacts around high contrast edges

Related KPIs

- Chromatic Displacement

Reference: ISO19084

Figure 15. Result of correcting the image in Figure 13(b) using parameters recovered from the image in Figure 13(a). (a-b) Close-ups of before and after pairs. The edges in the corrected image appear substantially less reddish. In (b), the residual artifact at the edge of the building is caused by saturation (which our technique cannot handle properly at present).

Kang, “Automatic Removal of Chromatic Aberration from a Single Image”
There are many types of color fringing, some result from blooming/cross-talk in sensor and tuning.
Let’s investigate how objective image quality metrics could impact your computer vision

1. Exposure + Motion Blur
2. Dynamic Range + Artifacts
3. Noise
4. Color
5. Shading
6. Resolution
7. Distortion
8. Texture Blur
9. Stray Light
10. Fringing + Blooming
11. Blemish
12. Dead Pixels
Image blemishes occur when dust / dirt / moisture are on the sensor or in / on the lens

Related KPIs

• # and size of blemishes

Reference:
https://www.imatest.com/docs/blemish/

Figure 1: The example of a semi-transparent soiling in form of a water drop on the camera lens. The detection of the bus behind the water drop works still well, while the road segmentation (green) is highly degraded in the soiled region. In

Michal Uricar “Let’s Get Dirty: GAN Based Data Augmentation for Camera Lens Soiling Detection in Autonomous Driving.”

© 2022 Commonlands LLC
Let’s investigate how objective image quality metrics could impact your computer vision

1. Exposure + Motion Blur
2. Dynamic Range + Artifacts
3. Noise
4. Color
5. Shading
6. Resolution
7. Distortion
8. Texture Blur
9. Stray Light
10. Fringing + Blooming
11. Blemish
12. Dead Pixels
Dead pixels brings us full circle, as a real-world adversarial attack if no correction is performed.

Su, et. al. “One Pixel Attack for Fooling Deep Neural Networks”
Dead pixels brings us full circle, as a real-world adversarial attack if no correction is performed.

“Nonetheless, we show some examples of situations where nearly imperceptible image modifications can result in dramatic perception changes.

Even in applications without malicious people trying to trick your system, the natural world, [your camera hardware, and your image processing pipeline] may be adversarial enough.”

Su, et. al. “One Pixel Attack for Fooling Deep Neural Networks”

Pezzementi, et. al “Putting Image Manipulations in Context: Robustness Testing for Safe Perception”
Where do I learn more about how image quality influences computer vision?

Visit our website for the slides, the papers cited in this talk, plus related resources:
-> Contact me at max.henkart@commonlands.com if working on a camera HW project or looking for lenses

Resources through the Alliance
• Felix Heide, Embedded Vision Summit 2018:

Notable examples included on our reference page:
IEEE P2020 Automotive Image Quality (Computer Vision) White Paper
Electronic Imaging (January 2023) and Imaging.org
University of Westminster & Nvidia’s Collaboration on Image Quality Metrics
Backup Slides
Contrast loss impacts both human visual perception and CNN-based methods.

Geirhos, et. al. “Comparing deep neural networks against humans: object recognition when the signal gets weaker”
Quantitative Degradation of Agricultural Outdoor Detection Based on Image Quality

| Mutation & Parameters | MC/CNN | GMIN/CNN | MD/MIN/MAX | SSD/SD | ADR
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Defocus (w, 100; s, 2.00)</td>
<td>0.59</td>
<td>0.79</td>
<td>0.79</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>Defocus (w, 3.00; s, 0.20)</td>
<td>0.79</td>
<td>0.79</td>
<td>0.68</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td>Defocus (w, 3.00; s, 0.20)</td>
<td>0.79</td>
<td>0.79</td>
<td>0.68</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td>Defocus (w, 1.00; s, 2.00)</td>
<td>0.80</td>
<td>0.79</td>
<td>0.63</td>
<td>0.71</td>
<td>0.71</td>
</tr>
<tr>
<td>Defocus (w, 2.00; s, 2.00)</td>
<td>0.80</td>
<td>0.79</td>
<td>0.63</td>
<td>0.71</td>
<td>0.71</td>
</tr>
<tr>
<td>Defocus (w, 4.00; s, 2.00)</td>
<td>0.47</td>
<td>0.26</td>
<td>0.17</td>
<td>0.64</td>
<td>0.64</td>
</tr>
<tr>
<td>Defocus (w, 1.00; s, 2.00)</td>
<td>0.72</td>
<td>0.14</td>
<td>0.17</td>
<td>0.44</td>
<td>0.44</td>
</tr>
<tr>
<td>Defocus (w, 2.00; s, 2.00)</td>
<td>0.72</td>
<td>0.14</td>
<td>0.17</td>
<td>0.44</td>
<td>0.44</td>
</tr>
<tr>
<td>Defocus (w, 3.00; s, 2.00)</td>
<td>0.57</td>
<td>0.29</td>
<td>0.21</td>
<td>0.63</td>
<td>0.63</td>
</tr>
<tr>
<td>Defocus (w, 4.00; s, 2.00)</td>
<td>0.46</td>
<td>0.24</td>
<td>0.21</td>
<td>0.56</td>
<td>0.56</td>
</tr>
<tr>
<td>Defocus (w, 1.00; s, 3.00)</td>
<td>0.37</td>
<td>0.11</td>
<td>0.13</td>
<td>0.42</td>
<td>0.42</td>
</tr>
<tr>
<td>Gaussian Blur (r, 0.5)</td>
<td>0.56</td>
<td>0.79</td>
<td>0.23</td>
<td>0.64</td>
<td>0.64</td>
</tr>
<tr>
<td>Gaussian Blur (r, 1.0)</td>
<td>0.48</td>
<td>0.77</td>
<td>0.24</td>
<td>0.61</td>
<td>0.61</td>
</tr>
<tr>
<td>Gaussian Blur (r, 1.5)</td>
<td>0.41</td>
<td>0.72</td>
<td>0.22</td>
<td>0.56</td>
<td>0.56</td>
</tr>
<tr>
<td>Gaussian Blur (r, 2.0)</td>
<td>0.33</td>
<td>0.71</td>
<td>0.19</td>
<td>0.51</td>
<td>0.51</td>
</tr>
<tr>
<td>Gaussian Blur (r, 2.5)</td>
<td>0.25</td>
<td>0.70</td>
<td>0.16</td>
<td>0.47</td>
<td>0.47</td>
</tr>
<tr>
<td>Hole (w, 978.0; s, 0.0001)</td>
<td>0.56</td>
<td>0.29</td>
<td>0.22</td>
<td>0.64</td>
<td>0.64</td>
</tr>
<tr>
<td>Hole (w, 320.0; s, 0.0001)</td>
<td>0.50</td>
<td>0.26</td>
<td>0.21</td>
<td>0.63</td>
<td>0.63</td>
</tr>
<tr>
<td>Blur (u, 97.8; m, 0.041)</td>
<td>0.36</td>
<td>0.19</td>
<td>0.14</td>
<td>0.61</td>
<td>0.61</td>
</tr>
<tr>
<td>Alpha Blend (0.1)</td>
<td>0.53</td>
<td>0.29</td>
<td>0.21</td>
<td>0.64</td>
<td>0.64</td>
</tr>
<tr>
<td>Alpha Blend (0.25)</td>
<td>0.38</td>
<td>0.24</td>
<td>0.18</td>
<td>0.64</td>
<td>0.64</td>
</tr>
<tr>
<td>Alpha Blend (0.25)</td>
<td>0.22</td>
<td>0.16</td>
<td>0.10</td>
<td>0.63</td>
<td>0.63</td>
</tr>
<tr>
<td>Alpha Blend (0.75)</td>
<td>0.21</td>
<td>0.04</td>
<td>0.00</td>
<td>0.54</td>
<td>0.54</td>
</tr>
<tr>
<td>JPEG Compression (p)</td>
<td>0.56</td>
<td>0.21</td>
<td>0.21</td>
<td>0.62</td>
<td>0.62</td>
</tr>
<tr>
<td>JPEG Compression (p)</td>
<td>0.51</td>
<td>0.25</td>
<td>0.19</td>
<td>0.57</td>
<td>0.57</td>
</tr>
<tr>
<td>JPEG Compression (p)</td>
<td>0.38</td>
<td>0.19</td>
<td>0.15</td>
<td>0.47</td>
<td>0.47</td>
</tr>
<tr>
<td>Brightness (0.3)</td>
<td>0.61</td>
<td>0.14</td>
<td>0.09</td>
<td>0.51</td>
<td>0.51</td>
</tr>
<tr>
<td>Brightness (0.133)</td>
<td>0.63</td>
<td>0.25</td>
<td>0.16</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>Brightness (0.134)</td>
<td>0.64</td>
<td>0.27</td>
<td>0.19</td>
<td>0.62</td>
<td>0.62</td>
</tr>
<tr>
<td>Brightness (0.3)</td>
<td>0.37</td>
<td>0.10</td>
<td>0.05</td>
<td>0.56</td>
<td>0.56</td>
</tr>
<tr>
<td>Brightness (0.25)</td>
<td>0.58</td>
<td>0.30</td>
<td>0.26</td>
<td>0.64</td>
<td>0.64</td>
</tr>
<tr>
<td>Brightness (0.5)</td>
<td>0.36</td>
<td>0.24</td>
<td>0.21</td>
<td>0.61</td>
<td>0.61</td>
</tr>
<tr>
<td>Salt and Pepper (1%)</td>
<td>0.56</td>
<td>0.27</td>
<td>0.20</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>Salt and Pepper (1%)</td>
<td>0.55</td>
<td>0.25</td>
<td>0.18</td>
<td>0.57</td>
<td>0.57</td>
</tr>
<tr>
<td>Salt and Pepper (1%)</td>
<td>0.50</td>
<td>0.21</td>
<td>0.14</td>
<td>0.54</td>
<td>0.54</td>
</tr>
<tr>
<td>Drop Channel Ch (YCBCr)</td>
<td>0.36</td>
<td>0.01</td>
<td>0.00</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>Drop Channel C (YCBCr)</td>
<td>0.28</td>
<td>0.04</td>
<td>0.00</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td>Drop Channel R (RGB)</td>
<td>0.64</td>
<td>0.07</td>
<td>0.01</td>
<td>0.51</td>
<td>0.51</td>
</tr>
<tr>
<td>Drop Channel C (RGB)</td>
<td>0.49</td>
<td>0.03</td>
<td>0.00</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>Drop Channel B (RGB)</td>
<td>0.49</td>
<td>0.03</td>
<td>0.00</td>
<td>0.39</td>
<td>0.39</td>
</tr>
<tr>
<td>Additive (w, 50.0; c, 0.5; g, 0.5)</td>
<td>0.66</td>
<td>0.26</td>
<td>0.21</td>
<td>0.63</td>
<td>0.63</td>
</tr>
<tr>
<td>Additive (w, 50.0; c, 0.5; g, 0.5)</td>
<td>0.60</td>
<td>0.27</td>
<td>0.19</td>
<td>0.63</td>
<td>0.63</td>
</tr>
<tr>
<td>Additive (w, 50.0; c, 1.5; g, 0.5)</td>
<td>0.40</td>
<td>0.25</td>
<td>0.19</td>
<td>0.61</td>
<td>0.61</td>
</tr>
<tr>
<td>Additive (w, 150.0; c, 0.5; g, 0.5)</td>
<td>0.39</td>
<td>0.25</td>
<td>0.18</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>Additive (w, 50.0; c, 2.5; g, 0.5)</td>
<td>0.59</td>
<td>0.21</td>
<td>0.15</td>
<td>0.59</td>
<td>0.59</td>
</tr>
</tbody>
</table>

TABLE IV: ADRs for each SUT under all mutations. Numerical values show ADR, while cell colorization depicts ADR normalized relative to that SUT’s baseline score, to highlight robustness characteristics. The color bar at right shows the normalized scale’s color mapping; note that performance can sometimes improve over baseline.

ADR= Average Detection Rate

© 2022 Commonlands LLC

47
Quantitative Degradation of Facial Recognition Networks Based on Image Quality

Fig. 3: Rank-1 and Rank-5 performances of different deep CNN-based face representation under image degradations.
Quantitative Degradation of A Variety of Images and Datasets

Fig. 3. Comparison of classification accuracies of different CNN architectures under different image degradations on synthetic digits dataset. For each type of degradation, the top figure shows accuracy (top-1 accuracy) vs. respective degradation parameter and the bottom figure shows top-3 accuracy vs. respective degradation parameter.
6) Distortion is the change in angular resolution (magnification) across field

Example of CV impact

- Must select line detection and/or dewarping methods carefully as camera to camera variations can throw off Hough transforms and RANSAC
- Fewer pixels for detection tasks at edges of negative FΘ lenses

KPI

- % Distortion (Optical, TV, SMIA TV)

Reference: ISO17850

Two 90° HFoV lenses on IMX477. Left 10% of image is shown.

Original Images