

Event-based Neuromorphic Perception and Computation: The Future of Sensing and Al

R.B. Benosman,

McGowan Institute, BST-3, Rm 2046, 3501 Fifth Avenue Pittsburgh, PA 15213 benosman@pitt.edu

Event-based Neuromorphic Perception and Computation: The Future of Sensing and Al

R.B. Benosman,

McGowan Institute, BST-3, Rm 2046, 3501 Fifth Avenue Pittsburgh, PA 15213 benosman@pitt.edu

Historic Timeline

Franck Rosenblatt: Perceptron

Russell's Infant Son: 5cm by 5cm (176x176 array) Portland Art Museum.

MIT summer Vision Project, Seymour Papert, automatically, background/foreground segmentation, extract nonoverlapping objects

David Marr. "Vision a computational investigation into the human representtion and processing of visual information" vision is hierarchical

1982

recognition. **Keypoints** 3D reconstruction gets "solved", generic object recognition

Feature based Pattern

1959
Electrical signal from brain 1958 Recording electrode

> David Hubel and Torsten Wieselin 1959. Their publication. entitled "Receptive fields of single neurons in the cat's striate cortex"

1963 1966

Lawrence Roberts' "Machine perception of three-dimensional solids". Process 2D photographs to build up 3D representations from lines.

PICTURE COMPUTER

1969

Azriel Rosenfeld Early applications of image analysis

1990' 2000' Geometry

Vision is ruled by Geometry, (projective) 3D reconstruction, fundamental matrix. RANSAC, bundle,

Historic Timeline

Russell's Infant Son: 5cm by 5cm (176x176 array) Portland Art Museum.

MIT summer Vision Project, Seymour Papert, automatically, background/foreground segmentation, extract nonoverlapping objects

David Marr, "Vision a computational investigation into the human representtion and processing of visual information" vision is hierarchical

recognition. Keypoints 3D reconstruction gets "solved", generic object recognition

Feature based Pattern

958

nblatt:

ptron

David Hubel and Torsten Wiesel in 1959. Their publication, entitled "Receptive fields of single neurons in the cat's striate cortex"

1963 1966

Lawrence Roberts' "Machine perception of three-dimensional solids", Process 2D photographs to build up 3D representations from lines.

PICTURE PROCESSING COMPUTER

1969 1982

Azriel Rosenfeld Early applications of image analysis

1990' 2000'

Vision is ruled by Geometry, (projective) 3D reconstruction. fundamental matrix, RANSAC, bundle,

2000'

What Went Wrong?

- Computer vision has been reinvented at least three times.
- Too close to the market: applications based research

Tendency to resist novelty choosing applications over potentially more promising methods that could not yet deliver

Not idea driven

What Went Wrong?

Why Are We Using Images?

- Images are the optimal structure of data
- Grey Levels as source of information

Computer Vision: a Heritage from Art!

- Invention of the camera obscura in 1544 (L. Da Vinci?)
- The mother of all cameras

Origins of Imaging

- Increasing profits: painting faster
- Evolution from portable models for travellers to current digital cameras
- Evolving from canvas, to paper, to glass, to celluloid, to pixels

Origins of Video: Motion Picture

Eadweard Muybridge (1830-1904)

- Early work in **motion-picture** projection
- Pioneering work on animal locomotion in 1877 and 1878
- Used multiple cameras to capture motion in stop-motion photographs

Computer vision, the Impossible Trade Off! power vs frame rate

High Power & High Latency

Event Acquisition

Scopes:

- Reduce Data Load and <u>only</u> Detect "meaningful" events, at the time they happen!
- Avoid burning energy to acquire, transmit and store information that ends up being trashed

Solutions:

- No generic solution,
- There are almost an infinite number of solutions to extract events
- Need to be adapted to the dynamics and nature of the data

Event acquisition

Popular solution: Sample on the amplitude axis of signals

- New Information is detected when it happens
- When nothing happens, nothing is sent or processed
- Sparse information coding

Time is the most valuable information

Event acquisition

Popular solution: Sample on the amplitude axis of signals

Time is the most valuable information

A 128×128 120dB 15us Latency Asynchronous Temporal Contrast Vision Sensor

Patrick Lichtsteiner, Christoph Posch, and Tobi Delbruck, Member, IEEE

$$|\Delta \log I| > T$$

A QVGA 143 dB Dynamic Range Frame-Free PWM Image Sensor With Lossless Pixel-Level Video Compression and Time-Domain CDS

Christoph Posch, Member, IEEE, Daniel Matolin, and Rainer Wohlgenannt

Temporal events and absolute light measurement

Frames vs Events

conventional frame-based camera

event-based camera

Why Event Based Sensors?

Chaotic pendulum tracking

Event Time-based Sensor: Grey Levels Events

Why Event Based Sensors?

Event Cameras

PROPHESEE METAVISION FOR MACHINES

Event Cameras

Event cameras have become a commodity

How to Process Events?

How to Process Events?

Event Computation

Applications: Event Stereovision

$$uu'f_{11} + uv'f_{21} + uf_{31} + vu'f_{12} + vv'f_{22} + vf_{32} + u'f_{31} + v'f_{23} + f_{33} = 0,$$

$$A\mathbf{f} = 0$$

- Matching pixels is hard
- Changing lighting conditions, occlusions, motion blur....

Event Stereovision

- Matching binocular events only using the time of events
- Two events arriving at the same time and fulfilling geometric constraints are matched

Event Stereovision

Visual Odometry

Event-Based Visual Flow

Ryad Benosman, Charles Clercq, Xavier Lagorce, Sio-Hoi Ieng, and Chiara Bartolozzi

$$I(x, y, t) = I(x + \Delta x, y + \Delta y, t + \Delta t)$$

For an incoming event:

$$e(p, t) = (p, t)^T$$

Form the surface (event times): $\Sigma_e: \mathbb{R}^2 \to \mathbb{R}^3$

$$\Sigma_e: \mathbb{R}^2 \to \mathbb{R}^3$$

$$p \mapsto t = \Sigma_e$$
.

We then have:

$$\frac{\partial \Sigma_e}{\partial x}(x, y_0) = \frac{d\Sigma_e|_{y=y_0}}{dx}(x) = \frac{1}{v_x(x, y_0)},$$

$$\frac{\partial \Sigma_e}{\partial y}(x_0, y) = \frac{d\Sigma_e|_{x=x_0}}{dy}(y) = \frac{1}{v_v(x_0, y)},$$

$$\nabla \Sigma_{e} = \left(\frac{1}{v_{x}}, \frac{1}{v_{y}}\right)^{T},$$

Event Flow

Event Flow

- High temporal resolution generates smooth space-time surfaces
- The slope of the local surface contains the orientation and amplitude of the optical flow

Event-Based Visual Flow

Ryad Benosman, Charles Clercq, Xavier Lagorce, Sio-Hoi Ieng, and Chiara Bartolozzi

Tracking Real-Time Outdoor Scenes

Tracking Real-Time Outdoor Scenes

Z. Ni, S.H. leng, C. Posch, S. Regnier, R.B. Benosman, Visual Tracking using Neuromorphic Asynchronous Event-based Cameras, 24 February 2015 Neural Computation 27(4):925-53, DOI: 10.1162/NECO-a-00720

Z. Ni, S.H. leng, C. Posch, S. Regnier, R.B. Benosman, Visual Tracking using Neuromorphic Asynchronous Event-based Cameras, 24 February 2015 Neural Computation 27(4):925-53, DOI: 10.1162/NECO-a-00720

Event-Based 3D Tracking and Pose Estimation

Low Power and Latency Streaming

Asynchronous Event-Based Fourrier Analysis

Last Two Decades: Rethinking Computer Vision in The Time Domain

Deep Temporal Learning: Time Surfaces

 $(2R_2+1)^2$

44

Deep Temporal Learning with Adaptive Temporal Feedback: Temporal Surfaces

Deep Temporal Learning with Adaptive Temporal Feedback: Temporal Surfaces

Computation Platfoms?

Two tendencies

Biomimetism

Understand and Accelerate

Computation Platfoms?

Analog vs Digital

https://wiki.ebrains.eu/bin/view/Collabs/ neuromorphic/BrainScaleS/

SpiNNaker

Neuromorphic Computing

A Processing Solution Adapted to Event Data

- event-based computation and machine learning
- Industry standard I/O and programmability
- Scalable, enabling fast and cost-effective derivatives

<10-100mW and up to 20 GigaEvents/s processing

Radar and LIDAR and much more...

Improving the Accuracy of Spiking Neural Networks for Radar Gesture Recognition Through Preprocessing

Ali Safa[©], Graduate Student Member, IEEE, Federico Corradi, Member, IEEE, Lars Keuninckx, Ilja Ocket, Member, IEEE, André Bourdoux[©], Senior Member, IEEE, Francky Catthoor, Fellow, IEEE, and Georges G. E. Gielen, Fellow, IEEE

Event-Based Structured Light for Depth Reconstruction using Frequency Tagged Light Patterns

T. Leroux, S.-H. Leng and R. Benosman
University of Pitthurgh, Carnegie Mellon University, Sorbonne Universitas
benosman@pittelu

DLP projector

ATIS camera

Sight Restoration: Prosthetics and Optogenetics

- Development of Retina Stimulation Goggles
- 3 generations of Retina Prosthetics
- Asynchronous Retina Stimulation: Prosthetics and Optogenetics

Sight Restoration: Prosthetics and Optogenetics

& much more..

Space awareness

Low power Online decoding and classification

Décision making: game theory stock Market

ADAS

Robotics

Sensory Substitution

Conclusions

- A whole new world to explore
- A deep <u>paradigm shift for Sensing & Al</u>
- Novel sensors to build
- New adapted processing architectures to design

Conclusions

- A whole new world to explore
- A deep <u>paradigm shift for Sensing & Al</u>
- Novel sensors to build
- New adapted processing architectures to design