
R.B. Benosman,
McGowan Institute,

BST-3, Rm 2046, 3501 Fifth Avenue

Pittsburgh, PA 15213

benosman@pitt.edu

Event-based Neuromorphic Perception and
Computation: The Future of Sensing and AI

1

mailto:benosman@pitt.edu

R.B. Benosman,
McGowan Institute,

BST-3, Rm 2046, 3501 Fifth Avenue

Pittsburgh, PA 15213

benosman@pitt.edu

Event-based Neuromorphic Perception and
Computation: The Future of Sensing and AI

2

mailto:benosman@pitt.edu

1959

Russell’s Infant

Son: 5cm by 5cm

(176x176 array)
Portland Art

Museum.

David Hubel and

Torsten Wiesel —

 in 1959. Their

publication,

entitled “Receptive

fields of single

neurons in the

cat’s striate

cortex”

Lawrence Roberts’

“Machine perception

of three-dimensional
solids”. Process 2D

photographs to build

up 3D representations

from lines.

1963 1966

MIT summer Vision

Project, Seymour Papert,

automatically,

background/foreground

segmentation, extract non-

overlapping objects

David Marr,

“Vision a computational

investigation into the
human representtion and

processing of visual

information” vision is

hierarchical

1982

Franck

Rosenblatt:

Perceptron

1958

Origins of
AI hype?

Frank Rosenblatt (1928-1971)

1980s: Milestones

• 1983: First CVPR

• 1987: First ICCV, IJCV

• Books: Marr (1982), Ballard & Brown (1982), Horn (1986)

1990s: Geometry reigns

• Fundamental matrix: Faugeras (1992)

• Normalized 8-point algorithm: Hartley (1997)

• RANSAC for robust fundamental matrix
estimation: Torr & Murray (1997)

• Bundle adjustment: Triggs et al. (1999)

• Hartley & Zisserman book (2000)

• Projective structure from motion: Faugeras and
Luong (2001)

Early applications of image analysis

• Character and digit recognition
• First OCR conference in 1962

• Microscopy, cytology

• Interpretation of aerial images
• Even before satellites!

• Particle physics
• Hough transform for analysis of bubble

chamber photos published in 1959

• Face recognition
• Article about W. Bledsoe

• Fingerprint recognition

Azriel Rosenfeld (1931-2004)

“Father of computer vision”

• Ph.D. in mathematics, Columbia, 1957

• Professor at UMD and ordained rabbi

• Wrote first textbook in the field in 1969

• Oral history (IEEE interview, 1998)

1969
Early applications of image analysis

• Character and digit recognition
• First OCR conference in 1962

• Microscopy, cytology

• Interpretation of aerial images
• Even before satellites!

• Particle physics
• Hough transform for analysis of bubble

chamber photos published in 1959

• Face recognition
• Article about W. Bledsoe

• Fingerprint recognition

Azriel Rosenfeld (1931-2004)

“Father of computer vision”

• Ph.D. in mathematics, Columbia, 1957

• Professor at UMD and ordained rabbi

• Wrote first textbook in the field in 1969

• Oral history (IEEE interview, 1998)

Azriel Rosenfeld

Early applications of

image analysis

1990’
s

Vision is ruled by

Geometry, (projective)

3D reconstruction,

fundamental matrix,

RANSAC, bundle,

2000’
s

Feature based Pattern

recognition.

Keypoints

3D reconstruction gets

“solved”, generic object

recognition

Historic Timeline

3

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1363130/

?

Historic Timeline

2000’
s

1959

Russell’s Infant

Son: 5cm by 5cm

(176x176 array)
Portland Art

Museum.

David Hubel and

Torsten Wiesel —

 in 1959. Their

publication,

entitled “Receptive

fields of single

neurons in the

cat’s striate

cortex”

Lawrence Roberts’

“Machine perception

of three-dimensional
solids”. Process 2D

photographs to build

up 3D representations

from lines.

1963 1966

MIT summer Vision

Project, Seymour Papert,

automatically,

background/foreground

segmentation, extract non-

overlapping objects

David Marr,

“Vision a computational

investigation into the
human representtion

and processing of visual

information” vision is

hierarchical

1982

Franck

Rosenblatt:

Perceptron

1958

Origins of
AI hype?

Frank Rosenblatt (1928-1971)

1980s: Milestones

• 1983: First CVPR

• 1987: First ICCV, IJCV

• Books: Marr (1982), Ballard & Brown (1982), Horn (1986)

1990s: Geometry reigns

• Fundamental matrix: Faugeras (1992)

• Normalized 8-point algorithm: Hartley (1997)

• RANSAC for robust fundamental matrix
estimation: Torr & Murray (1997)

• Bundle adjustment: Triggs et al. (1999)

• Hartley & Zisserman book (2000)

• Projective structure from motion: Faugeras and
Luong (2001)

Early applications of image analysis

• Character and digit recognition
• First OCR conference in 1962

• Microscopy, cytology

• Interpretation of aerial images
• Even before satellites!

• Particle physics
• Hough transform for analysis of bubble

chamber photos published in 1959

• Face recognition
• Article about W. Bledsoe

• Fingerprint recognition

Azriel Rosenfeld (1931-2004)

“Father of computer vision”

• Ph.D. in mathematics, Columbia, 1957

• Professor at UMD and ordained rabbi

• Wrote first textbook in the field in 1969

• Oral history (IEEE interview, 1998)

1969
Early applications of image analysis

• Character and digit recognition
• First OCR conference in 1962

• Microscopy, cytology

• Interpretation of aerial images
• Even before satellites!

• Particle physics
• Hough transform for analysis of bubble

chamber photos published in 1959

• Face recognition
• Article about W. Bledsoe

• Fingerprint recognition

Azriel Rosenfeld (1931-2004)

“Father of computer vision”

• Ph.D. in mathematics, Columbia, 1957

• Professor at UMD and ordained rabbi

• Wrote first textbook in the field in 1969

• Oral history (IEEE interview, 1998)

Azriel Rosenfeld

Early applications of

image analysis

1990’
s

Vision is ruled by

Geometry, (projective)

3D reconstruction,

fundamental matrix,

RANSAC, bundle,

2000’
s

Feature based Pattern

recognition.

Keypoints

3D reconstruction gets

“solved”, generic object

recognition

Historic Timeline

4

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1363130/

• Computer vision has been reinvented at least three times.

• Too close to the market: applications based research

Tendency to resist novelty choosing applications over potentially more

promising methods that could not yet deliver

• Not idea driven

Topic distribution of submissions for ICCV 2019
From Svetlana Lazebnik, Computer Vision: Looking Back to Look Forward (2020)

What Went Wrong?

5

What Went Wrong?

6

• Images are the optimal structure of data

• Grey Levels as source of information

Why Are We Using Images?

7

• Invention of the camera obscura in 1544 (L. Da Vinci?)

• The mother of all cameras

Computer Vision: a Heritage from Art!

8

Origins of Imaging

• Increasing profits: painting faster

• Evolution from portable models for travellers to current
digital cameras

• Evolving from canvas, to paper, to glass, to celluloid, to
pixels 9

Origins of Video: Motion Picture

• Early work in motion-picture projection

• Pioneering work on animal locomotion in 1877 and 1878

• Used multiple cameras to capture motion in stop-motion

photographs

Eadweard Muybridge

(1830-1904)

10

Computer vision,
the Impossible Trade Off!

power vs frame rate

redundant useless data

power and resource

hungry: need to

acquire/transmit/store/

process

motion blur

displacement between

frames

High Power & High Latency
11

Event Acquisition

• Reduce Data Load and only Detect “meaningful”
events, at the time they happen!

• No generic solution,

Solutions:

Scopes:

• Avoid burning energy to acquire, transmit and store
information that ends up being trashed

• There are almost an infinite number of solutions
to extract events

• Need to be adapted to the dynamics and
nature of the data

12

Event acquisition

• New Information is detected when it happens

• When nothing happens, nothing is sent or processed

• Sparse information coding

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

can only be obtained by increasing the frequency of acquisition that

would then have the effect of producing larger amount of data.

2.2 Quantifiying changes of luminance vs constant sam-

pling

Current acquistion processes are still resources’ consuming. Most

acquisition techniques rely on a constant sampling on the t axis.

This methods originates from the early times of audio signal, as

shown in (figure.3(a)) this process generates unnecessary redundant

data specially when values are unchanged over un long period of

time. This consuming process is acceptable if only few signals are

to be considered, but this turns to be a huge waste of resources

if a higher number of simultaneous signals are considered as it

is the case in images. In order to overcome these limitations and

provide an accurate temporal sampling of f (t), it is more efficient to

detect variations of f (t) just at the exact time at which they occur

(figure.3(b)), namely sampling on the other axis.

(a) t

f(t)

(b)

f(t)

t

Fig. 3. Two ways to sample functions values, in (a) using a

classic constant scale on the t axis, in (b) using a constant scale

but on the values of f (t).

This process is data oriented and discards redundancies at the

lowest level. Changes are detected precisely when they occur over-

coming all limitations of constant time sampling on the t axis.

This codification provides a compact representation of light changes,

this time oriented process is also compatible with observations that

temporal changes in scenes never occur spatially at the same time. It

is very rare that the whole content of an image changes completely

between two consecutive frames. If f (t) changes are quantized

according to a predefined quantity ∆ f , it becomes possible to define

a function E v providing temporal events corresponding to the exact

change time of ∆ f of f (t) (figure.3). The Luminance is no longer the

element to be retrieved, knowing the locations of temporal changes

and the value of ∆ f are sufficient to give an estimate. This model

is drastically different form today’s paradigm of vision as it states

that luminances’ values are not the key feature of vision but only

time changes. Luminances as we will show in the next section can

always be estimated using a incremental summation process. This

paradigm introduces a major change as it states that vision does

not rely on a static sampled set of low dynamics images but on

a collection of asynchronous functions each corresponding to a pixel

which independently and asynchronously encode at different spatial

locations the changes of light.

2.3 Codifications’ strategies to encode light changes

There are several ways to quantize f x ,y according to its values.

Let us define { tk } , the set of times of the signal sampling, with

assumption that 8k 2 N, t k + 1 > t k and t0 is the initial time. Some

standard sets are the following :

T = { tk | |F (f x ,y (t k) − f x ,y (tk − 1))| = ∆ f } , (5)

the signal is sampled each time the variation of the magnitude of F

is equal to ∆ f . In principle there is no forward method to choose

F , it has to be selected according to the task to be performed. In

what follows we will set F as the identity function in order to study

the general properties of codification based on relative changes. In

practice there is no elegant formulation of T as it is difficult to make

an assumption on f to have f − 1 as this contradicts the random nature

of light changes in scenes. Once T is set, E v(x, y, t) can then be

defined as :

E v(x, y, t) = δ(t , t k).si gn(f
0
x ,y (t)). (6)

δ() is the Kronecker delta function and sign() is the sign function

of a real number taking value in { − 1, 1} .

E v(x, y, t) gives a more compact representation of f x ,y using ∆ f ,

t0 tk

f x,y(t)

∆ f f̂ x,y(t)

α1 β1 α2 β2

Ev(t)
+1 +1 +1

-1-1 -1-1 -1

+1

Fig. 4. Codification of pixels gray-level variations into temporal

contrast events following T1 codification process.

its values are in the set { − 1, 0, 1} . The value 0 corresponds to

an absence of change of f x ,y which remains in an amplitude less

than ∆ f , while + 1 and − 1 indicate a change which direction is

given according to the sign. Once E v is known, it is possible to

approximate f x ,y by a piecewise constant function bf x ,y , knowing

∆ f and f x ,y (t0):

bf x ,y (t) =

+ 1X

i = 0

f i (t), (7)

where

f 0(t) =

(
f x ,y (t0) for 0 t < t0

0 otherwise
, (8)

f i (t) =

(
E vt 1 , t i (x, y)∆ f for t i t < t i + 1

0 otherwise
, (9)

and

E vt m , t n (x, y) =

nX

k = m

E v(x, y, tk). (10)

As shown in figure.4, f
0

x ,y changes sign during the transitions

between the ↵ i and the βi intervals, the next event will then appear

only when the whole amount of change is larger than ∆ f from the

last event in ↵1 . The crossing of a ∆ f theshold does not generate

an event.

Figure.5, gives a general overview of the whole process, starting

from the initial signal to be codified and the reconstructed one. It is

Popular solution: Sample on the amplitude axis of signals

Time is the most valuable information 13

Event acquisition

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

can only be obtained by increasing the frequency of acquisition that

would then have the effect of producing larger amount of data.

2.2 Quantifiying changes of luminance vs constant sam-

pling

Current acquistion processes are still resources’ consuming. Most

acquisition techniques rely on a constant sampling on the t axis.

This methods originates from the early times of audio signal, as

shown in (figure.3(a)) this process generates unnecessary redundant

data specially when values are unchanged over un long period of

time. This consuming process is acceptable if only few signals are

to be considered, but this turns to be a huge waste of resources

if a higher number of simultaneous signals are considered as it

is the case in images. In order to overcome these limitations and

provide an accurate temporal sampling of f (t), it is more efficient to

detect variations of f (t) just at the exact time at which they occur

(figure.3(b)), namely sampling on the other axis.

(a) t

f(t)

(b)

f(t)

t

Fig. 3. Two ways to sample functions values, in (a) using a

classic constant scale on the t axis, in (b) using a constant scale

but on the values of f (t).

This process is data oriented and discards redundancies at the

lowest level. Changes are detected precisely when they occur over-

coming all limitations of constant time sampling on the t axis.

This codification provides a compact representation of light changes,

this time oriented process is also compatible with observations that

temporal changes in scenes never occur spatially at the same time. It

is very rare that the whole content of an image changes completely

between two consecutive frames. If f (t) changes are quantized

according to a predefined quantity ∆ f , it becomes possible to define

a function E v providing temporal events corresponding to the exact

change time of ∆ f of f (t) (figure.3). The Luminance is no longer the

element to be retrieved, knowing the locations of temporal changes

and the value of ∆ f are sufficient to give an estimate. This model

is drastically different form today’s paradigm of vision as it states

that luminances’ values are not the key feature of vision but only

time changes. Luminances as we will show in the next section can

always be estimated using a incremental summation process. This

paradigm introduces a major change as it states that vision does

not rely on a static sampled set of low dynamics images but on

a collection of asynchronous functions each corresponding to a pixel

which independently and asynchronously encode at different spatial

locations the changes of light.

2.3 Codifications’ strategies to encode light changes

There are several ways to quantize f x ,y according to its values.

Let us define { tk } , the set of times of the signal sampling, with

assumption that 8k 2 N, t k + 1 > t k and t0 is the initial time. Some

standard sets are the following :

T = { tk | |F (f x ,y (t k) − f x ,y (tk − 1))| = ∆ f } , (5)

the signal is sampled each time the variation of the magnitude of F

is equal to ∆ f . In principle there is no forward method to choose

F , it has to be selected according to the task to be performed. In

what follows we will set F as the identity function in order to study

the general properties of codification based on relative changes. In

practice there is no elegant formulation of T as it is difficult to make

an assumption on f to have f − 1 as this contradicts the random nature

of light changes in scenes. Once T is set, E v(x, y, t) can then be

defined as :

E v(x, y, t) = δ(t , t k).si gn(f
0
x ,y (t)). (6)

δ() is the Kronecker delta function and sign() is the sign function

of a real number taking value in { − 1, 1} .

E v(x, y, t) gives a more compact representation of f x ,y using ∆ f ,

t0 tk

f x,y(t)

∆ f f̂ x,y(t)

α1 β1 α2 β2

Ev(t)
+1 +1 +1

-1-1 -1-1 -1

+1

Fig. 4. Codification of pixels gray-level variations into temporal

contrast events following T1 codification process.

its values are in the set { − 1, 0, 1} . The value 0 corresponds to

an absence of change of f x ,y which remains in an amplitude less

than ∆ f , while + 1 and − 1 indicate a change which direction is

given according to the sign. Once E v is known, it is possible to

approximate f x ,y by a piecewise constant function bf x ,y , knowing

∆ f and f x ,y (t0):

bf x ,y (t) =

+ 1X

i = 0

f i (t), (7)

where

f 0(t) =

(
f x ,y (t0) for 0 t < t0

0 otherwise
, (8)

f i (t) =

(
E vt 1 , t i (x, y)∆ f for t i t < t i + 1

0 otherwise
, (9)

and

E vt m , t n (x, y) =

nX

k = m

E v(x, y, tk). (10)

As shown in figure.4, f
0

x ,y changes sign during the transitions

between the ↵ i and the βi intervals, the next event will then appear

only when the whole amount of change is larger than ∆ f from the

last event in ↵1 . The crossing of a ∆ f theshold does not generate

an event.

Figure.5, gives a general overview of the whole process, starting

from the initial signal to be codified and the reconstructed one. It is

Popular solution: Sample on the amplitude axis of signals

Time is the most valuable information

14

Frame-free dynamic digital vision

Tobi Delbruck

Institute of Neuroinformatics, University and ETH Zurich, Winterthurerstr. 190, CH-8057 Zurich, Switzerland

tobi@ini.phys.ethz.ch

ABSTRACT — Conventional image sensors produce

massive amounts of redundant data and are limited in

temporal resolution by the frame rate. This paper reviews

our recent breakthrough in the development of a high-

performance spike-event based dynamic vision sensor

(DVS) that discards the frame concept entirely, and then

describes novel digital methods for efficient low-level

filtering and feature extraction and high-level object

tracking that are based on the DVS spike events. These

methods filter events, label them, or use them for object

tracking. Filtering reduces the number of events but

improves the ratio of informative events. Labeling attaches

additional interpretation to the events, e.g. orientation or

local optical flow. Tracking uses the events to track moving

objects. Processing occurs on an event-by-event basis and

uses the event time and identity as the basis for

computation. A common memory object for filtering and

labeling is a spatial map of most recent past event times.

Processing methods typically use these past event times

together with the present event in integer branching logic to

filter, label, or synthesize new events. These methods are

straightforwardly computed on serial digital hardware,

resulting in a new event- and timing-based approach for

visual computation that efficiently integrates a neural style

of computation with digital hardware. All code is open-

sourced in the jAER project (jaer.wiki.sourceforge.net).

Keywords — Neuromorphic, AER, address-event, vision
sensor, spike, surveillance, tracking, feature extraction, low-
latency vision

I. INTRODUCTION

Conventional image processing methods rely on

operating on the entire image in each frame, touching

each pixel many times and leading to a high cost of

computation and memory communication bandwidth,

especially for high frame-rate applications. For example,

a brute force computation of a set of wavelet transforms

can cost thousands of machine instructions in floating

point precision for each pixel of the image. Methods such

as image pyramids [1] or integral image transforms [2]

can reduce this computational cost but still require at

least one pass over all pixels in each frame. In addition,

the limited frame rate limits response latency and

temporal resolution and greatly complicates tracking of

fast moving objects.

We recently achieved a breakthrough in developing a

Dynamic Vision Sensor (DVS) [3, 4] with unprecedented

raw performance characteristics and usability. The DVS

output consists of asynchronous address-events that

signal scene reflectance changes at the times they

occur (Fig. 1). This sensor loosely models that transient

pathway in biological retinas. The output of the sensor is

in the form of asynchronous digital spike address-events

of pixels encoded on a shared digital bus. [5-7].

Fig. 1 DVS characteristics. a) the dynamic vision sensor with lens

and USB2.0 interface; b) a die photograph labeled with components.

Also shown is the row and column from a pixel that generates an event;

c) abstracted schematic of the pixel which responds with events to

fixed-size changes of log intensity; d) how the ON and OFF events are

internally represented and output in response to an input signal.

The DVS was conceived in the CAVIAR project [8],

where it provides the input to a chain of hybrid analog-

digital address-event chips. The main achievement of this

project was the realization of a real time spike-based

system for visual processing consisting of series of feed

forward processing components that model early visual

processing, object classification and tracking. In the

desire to build a system entirely based on neural-like

architectures, the flexibility of procedural computation

was lost and it became very difficult to configure the

system to do anything other that what it was originally

conceived to do.

This concern has led to a series of ongoing

investigations of how the retina events can be digitally

processed by algorithms running on standard hardware

Proceedings of Intl. Symp. on Secure-Life Electronics, Advanced Electronics for Quality Life and Society, Univ. of Tokyo, Mar. 6-7, 2008, pp. 21-26.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

19

PD

Analog

Digital

128x128

pixel array

Bias generators

AER circuits

X,Polarity

Y

4
0

 u
m

a)

b)

6
 m

m

Fig. 4 a) Die photo of the 0.35u 4M 2P process chip. b) Pixel layout is quad-miror-symmetric with photodiode (PD) and analog and digital parts of the pixel.

Most of the rest of the pixel is occupied by capacitance.

(a) Vision sensor system

(b) Vision sensor USB interface

TMPDIFF128

16 bit

counter

USB

interface
Host PC

USB

Req

Biases

Ack

Enb

Enb

16 bit

bus

FIFOs
buffers

3

Fig. 5 Shows the present implementation of the TMPDIFF128 camera system with USB2.0 interface. (a) shows the vision sensor system. (b) is a schematic view

of the USB hardware and software interface. The vision sensor (TMPDIFF128) sends AEs to the USB interface, which also captures timestamps from a free-

running counter running at 100 kHz that shares the same 16-bit bus. These timestamped events are buffered by the USB FIFOs to be sent to the Host PC. The PC

also buffers the data in USB driver FIFOs, ‘unwraps’ the 16 bit timestamps to 32 bit values, and offers this data to other threads for further processing. The same

USB chip also uses a serial interface to control the vision sensor biases. Flash memory on the USB chip stores persistent bias values.

15

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 46, NO. 1, JANUARY 2011 259

A QVGA 143 dB Dynamic Range Frame-Free PWM

Image Sensor With Lossless Pixel-Level Video

Compression and Time-Domain CDS
Christoph Posch, Member, IEEE, Daniel Matolin, and Rainer Wohlgenannt

Abstract—The biomimetic CMOS dynamic vision and image
sensor described in this paper is based on a QVGA (304 240)
array of fully autonomous pixels containing event-based change

detection and pulse-width-modulation (PWM) imaging circuitry.

Exposure measurements are initiated and carried out locally by
the individual pixel that has detected a change of brightness in
its field-of-view. Pixels do not rely on external timing signals

and independently and asynchronously request access to an
(asynchronous arbitrated) output channel when they have new

grayscale values to communicate. Pixels that are not stimulated

visually do not produce output. The visual information acquired
from the scene, temporal contrast and grayscale data, are com-

municated in the form of asynchronous address-events (AER),

with the grayscale values being encoded in inter-event intervals.
The pixel-autonomous and massively parallel operation ideally
results in lossless video compression through complete temporal

redundancy suppression at the pixel level. Compression factors
depend on scene activity and peak at 1000 for static scenes. Due

to the time-based encoding of the illumination information, very

high dynamic range—intra-scene DR of 143 dB static and 125 dB
at 30 fps equivalent temporal resolution—is achieved. A novel

time-domain correlated double sampling (TCDS) method yields

array FPN of 0.25% rms. SNR is 56 dB (9.3 bit) for 10 Lx
illuminance.

Index Terms—Address-event representation (AER),

biomimetics, CMOS image sensor, event-based vision, focal-plane
processing, high dynamic range (HDR), neuromorphic electronics,
time-domain CDS, time-domain imaging, video compression.

I. INTRODUCTION

B
IOLOGICAL sensory and information processing sys-

tems appear to be much more effective in dealing with

real-world tasks than their artificial counterparts. Humans still

outperform the most powerful computers in routine functions

involving, e.g., real-time sensory data processing, perception

tasks and motion control and are, most strikingly, orders of

magnitude more energy-efficient in completing these tasks. The

reasons for the superior performance of biological systems are

still only partly understood, but it is apparent that the hardware

architecture and the style of computation in nervous systems are

fundamentally different from what is state-of-the-art in artificial

Manuscript received April 23, 2010; revised June 25, 2010; accepted
September 08, 2010. Date of current version December 27, 2010. This paper
was approved by Guest Editor Kofi Makinwa.

The authors are with the Department of Safety and Security, AIT
Austrian Institute of Technology GmbH, 1220 Vienna, Austria (e-mail:
christoph.posch@ait.ac.at).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSSC.2010.2085952

synchronous information processing. It has been demonstrated

[1]–[3] that modern silicon VLSI technology can be employed

in the construction of biomimetic or neuromorphic artefacts that

mimic biological neural functions. Neuromorphic systems, as

the biological systems they model, process information using

energy-efficient, asynchronous, event-driven methods.

The greatest successes of neuromorphic systems to date have

been in the emulation of peripheral sensory transduction, most

notably in vision. Since the seminal attempt to build a “silicon

retina” by Mahowald and Mead in the late 1980s [4], a variety of

biomimetic vision devices has been proposed and implemented

[5]. In the field of imaging and vision, two observations are

crucial: biology has no notion of a frame, and the world—the

source of most visual information we are interested in—works

in continuous-time and asynchronously. The authors are con-

vinced that biomimetic asynchronous electronics and signal

processing have the potential—also in fields that are histori-

cally dominated by synchronous approaches such as artificial

vision, image sensing and image processing—to reach entirely

new levels of performance and functionality, comparable to

the ones found in biological systems. Future artificial vision

systems, if they want to succeed in demanding applications

such as, e.g., autonomous robot navigation, high-speed motor

control, visual feedback loops, etc. must exploit the power of

the asynchronous, frame-free, biomimetic approach.

Studying biological vision, it has been noted that there exist

two different types of retinal ganglion cells and corresponding

retina–brain pathways in, e.g., the human retina: The “Magno”-

cells are at the basis of what is named the transient channel or the

Magno-cellular pathway. They have short latencies and respond

transiently when changes—movements, onsets, offsets—are in-

volved. The “Parvo”-cells are at the basis of what is called the

sustained channel or the Parvo-cellular pathway. Parvo-cells are

mainly concentrated in the fovea, the center of the retina. They

have longer latencies, respond in a sustained way, and are most

probably involved in the transportation of detailed pattern, tex-

ture and color information. It appears that these two parallel

pathways in the visual system are specialized for certain types

of visual perception [6].

• The Magno-cellular system is more oriented toward gen-

eral detection or alerting and is referred to as the “where”

system.

• Once an object is detected, the detailed visual information

(spatial details, color) seems to be carried primarily by the

Parvo-system. It is hence called the “what” system.

Practically all conventional frame-based image sensors can

functionally be attributed to the “what” system side, thus ne-

0018-9200/$26.00 © 2010 IEEE

Temporal events and absolute light measurement
16

Frames vs Events

17

Why Event Based Sensors?

Chaotic pendulum tracking

18

Event Time-based Sensor: Grey Levels Events

19

CCAM sensors provide frame-free visual information

CCAM is generating 70 times

less events than a resolution

equivalent 1000 fps frame-

based camera

the number of events depends on the

dynamics of the scene. For standard

cameras this amount is constant.

Why Event Based Sensors?

20

Event Cameras

21

Event cameras have become a commodity

Event Cameras

22

How to Process Events?

23

How to Process Events?

24

IncrementalTime

?
Update previous result
incrementally for the
single pixel change

Compute the new 1 pixel-
change frame and
compute result using the
whole frame

Batch or Frame

REINBACHER et al.: REAL-TIME IMAGE RECONSTRUCTION FOR EVENT CAMERAS 9

Figure 3: Sample results from our method. The columns depict raw events, time manifold,

result without manifold regularisation and finally with our manifold regularisation. Notice

the increased contrast in weakly textured regions (especially around theedgeof themonitor).

the results of [1]. We point out that no ground truth data is available so we are limited to

purely qualitative comparisons.

In Fig. 4 we show a few images from the sequences. Since we are dealing with highly

dynamic data, we point the reader to the included supplementary video3 which shows whole

sequences of several hundred frames.

Figure 4: Comparison to the method of [1]. The first row shows the raw input events that

have been used for both methods. The second row depicts the results of Bardow et al., and

the last row shows our result. We can see that out method produces more details (e.g. face,

beard) as well as more graceful gray value variations in untextured areas, where [1] tends to

produce a single gray value.

4.4 Compar ison to Standard Cameras

We have captured a sequence using a DVS128 camera as well as a Canon EOS60D DSLR

camera to compare the fundamental differences of traditional cameras and event-based cam-

eras. As already pointed out by [1], rapid movement results in motion blur for conventional

3ht t ps: / / www. yout ube. com/ wat ch?v=r vB2URr GT94

Figure 2: Block diagram of the proposed approach. The output of the event camera is collected into frames over a specified

time interval T, using a separate channel depending on the event polarity (positive and negative). The resulting synchronous

event frames are processed by aResNet-inspired network, which produces aprediction of the steering angle of the vehicle.

without resorting to partitioning the solution space; the an-

gles produced by our network can take any value, not just

discreteones, in therange[− 180◦ ,180◦]. Moreover, in con-

trast to previous event-based vision learning works which

use small datasets, we show results on the largest and most

challenging (dueto scenevariability) event-based dataset to

date.

3. Methodology

Our approach aims at predicting steering wheel com-

mands from a forward-looking DVS sensor [1] mounted on

a car. As shown in Fig. 2, we propose a learning approach

that takes as input the visual information acquired by an

event camera and outputs the vehicle’s steering angle. The

events are converted into event frames by pixel-wise accu-

mulation over a constant time interval. Then, a deep neural

network mapstheevent framesto steering anglesby solving

a regression task. In the following, we detail the different

steps of the learning process.

3.1. Event-to-Frame Conversion

All recent and successful deep learning algorithms are

designed for traditional video input data (i.e., frame-based

and synchronous) to benefit from conventional processors.

In order to takeadvantageof such techniques, asynchronous

events need to be converted into synchronous frames. To

do that, we accumulate the events1 ek = (xk,yk, tk, pk) over

a given time interval T in a pixel-wise manner, obtaining

2D histograms of events. Since event cameras naturally

respond to moving edges, these histograms of events are

maps encoding the relative motion between the event cam-

eraand thescene. Additionally, dueto thesensing principle

of event cameras, they are free from redundancy.

Inspired by [18], weuseseparate histograms for positive

1An event ek consists of the spatiotemporal coordinates (xk,yk,tk) of a

relativebrightness changeof predefinedmagnitude together with itspolar-

ity pk 2 { − 1,+ 1} (i.e., the sign of thebrightness change).

and negativeevents. The histogram for positiveevents is

h+ (x,y)
.
= Â

tk2T, pk= + 1

d(x− xk,y− yk), (1)

where d is the Kronecker delta, and the histogram h− for

thenegativeevents isdefined similarly, using pk = − 1. The

histograms h+ and h− arestacked to produceatwo-channel

event image. Events of different polarity are stored in dif-

ferent channels, asopposed to asingle channel with thebal-

ance of polarities (h+ − h−), to avoid information loss due

to cancellation in case events of opposite polarity occur in

the same pixel during the integration interval T.

3.2. Learning Approach

3.2.1. Preprocessing. A correct normalization of input

and output data is essential for reliably training any neural

network. Since roads are almost always straight, the steer-

ing angle’s distribution of a driving car is mainly picked in

[−5◦ ,5◦]. This unbalanced distribution results in a biased

regression. In addition, vehicles frequently stand still be-

cause they are exposed, for example, to traffic lights and

pedestrians. In those situations where there is no motion,

only noisy events will be produced. To handle those prob-

lems, wepre-processed theoutput variable (i.e. steering an-

gles) to allow successful learning. To cope with the first is-

sue, only 30% of the datacorresponding to asteering angle

lower than 5◦ is deployed at training time. For the latter we

filtered out data corresponding to a vehicle’s speed smaller

than 20kmh−1. To remove outliers, the filtered steering an-

gles are then trimmed at three times their standard devia-

tion and normalized to the range [− 1,1]. At testing time,

all data corresponding to a steering angle lower than 5◦ is

considered, as well as scenarios under 20kmh−1. The re-

gressed steering angles are denormalized to output values

in the range [− 180◦ ,180◦]. Finally, we scaled the network

input (i.e., event images) to the range [0,1].

3.2.2. Network Architecture. To unlock the power of

convolutional architectures for our study case, wefirst have

Event Computation

V
S

25

Applications: Event Stereovision

• Matching pixels is hard
• Changing lighting conditions, occlusions, motion blur….

26

• Matching binocular events only using the time of events

• Two events arriving at the same time and fulfilling geometric

constraints are matched

Event Stereovision

P.Rogister, R.B. Benosman, S-H. Ieng, P. Lichtsteiner, T. Delbruck, Asynchronous Event-based Binocu- lar Stereo Matching. 2011 December 23, IEEE

Transactions on Neural Networks 23(2) : 347-353, DOI : 10.1109/TNNLS.2011.2180025

27

S.H. Ieng, J. Carneiro, M. Osswald, R. B.Benosman, Neuromorphic Event-Based Generalized Time-based Stereovision, 2018 July 18, Frontiers in

Neuroscience, 12(442), DOI :10.3389/fnins.2018.00442

Event Stereovision

28

Courtesy Chronocam 2016
29

Visual Odometry

Courtesy Chronocam 2016
30

2

to artificial vision that intrinsically remains linked to the

frequency of the available cameras, generally not exceeding

60Hz. Most of the developed techniques are computationally

expensive and are mostly used off line.

2 NEUROMORPHIC SILICON RETINA

Biological retinas, unlike frame-based cameras, transmit less-

redundant information about avisual scene in an asynchronous

manner. The various functionalities of the retina have been

incorporated into neuromorphic vision sensors since the late

eighties in the pioneering work of Mahowald [28]. Since then,

the most interesting achievements in neuromorphic retinas’

has been the development of activity-driven sensing. The

event-based vision sensors output compressed digital data in

the form of events, removing redundancy, reducing latency

and increasing dynamic range as compared with conventional

imagers. A complete review of the history and existing sensors

can be found in [29]. The Dynamic Vision Sensor (DVS) used

in this work is an Address-Event Representation (AER) silicon

retina with 128 × 128 pixels [30]. The DVS output consists

of asynchronous address-events that signal scene reflectance

changes at the times they occur. Each pixel is independent

and detects changes in log intensity larger than a threshold

since the last emitted event (typically 15% contrast). As shown

in Fig. 1, when the change in log intensity exceeds a set

threshold, an ON or OFF event is generated by the pixel

depending on whether the log intensity increased or decreased.

The advantages of such a sensor, over conventional clocked

cameras, are that only moving objects produce data thus

reducing the load of post-processing. Additionally, the timing

of events can be conveyed with very low latency and accurate

temporal resolution of 1µs. Thus the ”effective frame rate” is

typically several kHz.

(a)

568 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 2, FEBRUARY 2008

dynamic range and absolute—rather than relative—illumina-

tion-change threshold, meaning that the single threshold is only

useful when the scene illumination is very uniform. It is also

frame based, so the event times are quantized to the limited

global sample rate.

Culurciello and Andreou [15] reported several imaging sen-

sors that use AER to communicate the pixel intensity, either by

inter-event interval or mean frequency. They have the advan-

tage of relatively small pixel size, but the big disadvantage that

the bus bandwidth is allocated according to the local scene lu-

minance. Because there is no reset mechanism and because the

event interval directly encodes intensity, a dark pixel can take a

long time to emit an event, and a single highlight in the scene

can saturate the bus.

Other recent developments include the time-to-first-spike

(TTFS) imager [16] and the time-based imager [17] from

Harris’s group, a foveated AER vision sensor [18] from

Häfliger’s group a spatial-contrast AER retina [19] with

in-pixel digitally programmed offset current calibration from

Linares-Barranco’s group, and a double line sensor based on

the pixel reported here [20].

Kramer et al. [7], [21] reported the predecessors to the chip

described here. The problem with these devices that led to the

present development is mismatch in the transistor feedback el-

ements, which makes it difficult to set a low contrast threshold

across a large array. In addition, the leakage current in the

feedback element results in a significantly non-zero corner

frequency, i.e., the devices could not be adjusted to respond to

very slow changes.

II. VISION SENSOR DESIGN

This section will describe the vision sensor design, starting

with the pixel and then more briefly describing the rest of the

chip design.

A. Pixel Design

The objective for this pixel design was to achieve low mis-

match, wide dynamic range, and low latency in a reasonable

pixel area. We met these challenges with a fast logarithmic pho-

toreceptor circuit, a differencing circuit that amplifies changes

with high precision, and cheap two-transistor comparators.

Fig. 1(a) shows how these three components are connected.

The photoreceptor circuit has the desirable properties that it

automatically controls individual pixel gain (by its logarithmic

response) while at the same time responding quickly to changes

in illumination. The drawback of this photoreceptor circuit is

that transistor threshold variation causes substantial DC mis-

match between pixels, necessitating calibration when this output

is used directly [22], [23].

The DC mismatch is removed by balancing the output of the

differencing circuit to a reset level after the generation of an

event. The gain of the change amplification is determined by

the well-matched capacitor ratio . The effect of inevitable

comparator mismatch is reduced by the precise gain of the dif-

ferencing circuit.

Fig. 1. (a) Abstracted pixel schematic. (b) Principle of operation. In (a), the

inverters are symbols for single-ended inverting amplifiers.

Because the differencing circuit removes DC and due to the

logarithmic conversion in the photoreceptor, the pixel is sensi-

tive to temporal contrast , which we define as

(1)

where is the photocurrent. (The units of do not affect

). Fig. 2(b) illustrates the principle of operation of the

pixel. In the rest of this section, we will consider in detail the

operation of these component parts of the pixel circuit (Fig. 2).

The photoreceptor circuit comprises a photodiode whose

photocurrent is sourced by a saturated NMOS transistor .

The gate of is connected to the output of an inverting

amplifier (, ,) whose input is connected to the

photodiode. This well-known transimpedance configuration

(see, e.g., [24]) converts the photocurrent logarithmically into

a voltage and also holds the photodiode clamped at a virtual

ground. The bandwidth of the photoreceptor is extended by the

factor of the loop gain in comparison to a passive logarithmic

photoreceptor circuit. This extended bandwidth is beneficial for

high-speed applications, especially in low lighting conditions.

Additionally, this photoreceptor circuit includes the option

of adaptive biasing. Using a fraction of the low-pass-filtered

sum of the photocurrents of all pixels to directly generate the

bias voltage for [25] can reduce power consumption and

maintain a constant resonance (constant quality factor) of

the photoreceptor.

The photoreceptor output is buffered with a source fol-

lower to to isolate the sensitive photoreceptor from the rapid

transients in the differencing circuit. The source follower drives

the capacitive input of the differencing circuit. The following

(b)

Fig. 1. (a) First generation DVS sensor with 128 by

128 pixels [30]. (b) Principle of ON and OFF spikes

generation of DVS pixels, adapted from Lichtsteiner et al.

[30]. Top, the evolution of pixel’s voltage Vp proportional to

the log intensity. Below, the corresponding generation of

ON (voltage increases above change threshold) and OFF

(voltage decreases) events, from which the evolution of

Vp can be reconstructed.

The encoding of log intensity of light change implements

a form of local gain adaptation which allows them to work

over scene illuminations that range from 2 lux to over 100

klux. When events are transmitted off-chip, they are time-

stamped and then transmitted to a computer using a standard

USB connection.

3 EVENT-BASED VISUAL MOTION FLOW

The stream of events from the silicon retina can be mathemat-

ically defined as follows: let e(p, t) = (p, t)T a triplet giving

the position p = (x, y)T and the time t of an event. We can

then define the function Σe that maps to each p, the time t:

Σe : R2 → R3

p → t = Σe.
(1)

Time being an increasing function, Σe is then a monotonically

increasing surface.

X

Y

t

Σe

Σex

Σey

Σe(x,y)

x

y

Fig. 2. General principle of visual flow computation,

the surface of active events Σe is derived to provide an

estimation of orientation and amplitude of motion.

We then set the first partial derivatives with respect to the

parameters as: Σex
= ∂Σ e

∂ x
and Σey

= ∂Σ e

∂ y
.

We can then write Σe as:

Σe(p + ∆ p) = Σe(p) + ∇ ΣT
e ∆ p + o(||∆ p||), (2)

with ∇ Σe = (∂Σ e

∂ x
, ∂Σ e

∂ y
)T .

The partial functions of Σe are functions of a single variable

whether x or y. Time being a strictly increasing function, Σe

is a nonzero derivatives surface at any point. It is then possible

to use the inverse function theorem to write around a location

p = (x, y)T :

∂Σe

∂x
(x, y0) =

dΣe|y= y0

dx
(x) =

1

vx (x, y0)
,

∂Σe

∂y
(x0, y) =

dΣe|x = x 0

dy
(y) =

1

vy (x0, y)
,

(3)

Σe|x = x 0
, Σe|y= y0

being Σe restricted respectively to y and

x. The gradient ∇ Σe can then be written:

∇ Σe = (
1

vx

,
1

vy

)T , (4)

which provides the inverse of the pixellic velocity of events

vs time. ∂Σ e

∂ x
and ∂Σ e

∂ y
provide the measurement of the rate

and direction of change of time according to space namely

s/ pi xels.

2

to artificial vision that intrinsically remains linked to the

frequency of the available cameras, generally not exceeding

60Hz. Most of the developed techniques are computationally

expensive and are mostly used off line.

2 NEUROMORPHIC SILICON RETINA

Biological retinas, unlike frame-based cameras, transmit less-

redundant information about avisual scene in an asynchronous

manner. The various functionalities of the retina have been

incorporated into neuromorphic vision sensors since the late

eighties in the pioneering work of Mahowald [28]. Since then,

the most interesting achievements in neuromorphic retinas’

has been the development of activity-driven sensing. The

event-based vision sensors output compressed digital data in

the form of events, removing redundancy, reducing latency

and increasing dynamic range as compared with conventional

imagers. A complete review of thehistory and existing sensors

can be found in [29]. The Dynamic Vision Sensor (DVS) used

in thiswork isan Address-Event Representation (AER) silicon

retina with 128 × 128 pixels [30]. The DVS output consists

of asynchronous address-events that signal scene reflectance

changes at the times they occur. Each pixel is independent

and detects changes in log intensity larger than a threshold

since the last emitted event (typically 15% contrast). Asshown

in Fig. 1, when the change in log intensity exceeds a set

threshold, an ON or OFF event is generated by the pixel

depending on whether the log intensity increased or decreased.

The advantages of such a sensor, over conventional clocked

cameras, are that only moving objects produce data thus

reducing the load of post-processing. Additionally, the timing

of events can be conveyed with very low latency and accurate

temporal resolution of 1µs. Thus the ”effective frame rate” is

typically several kHz.

(a)

568 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 2, FEBRUARY 2008

dynamic range and absolute—rather than relative—illumina-

tion-change threshold, meaning that the single threshold is only

useful when the scene illumination is very uniform. It is also

frame based, so the event times are quantized to the limited

global sample rate.

Culurciello and Andreou [15] reported several imaging sen-

sors that use AER to communicate the pixel intensity, either by

inter-event interval or mean frequency. They have the advan-

tage of relatively small pixel size, but the big disadvantage that

the bus bandwidth is allocated according to the local scene lu-

minance. Because there is no reset mechanism and because the

event interval directly encodes intensity, a dark pixel can take a

long time to emit an event, and a single highlight in the scene

can saturate the bus.

Other recent developments include the time-to-first-spike

(TTFS) imager [16] and the time-based imager [17] from

Harris’s group, a foveated AER vision sensor [18] from

Häfliger’s group a spatial-contrast AER retina [19] with

in-pixel digitally programmed offset current calibration from

Linares-Barranco’s group, and a double line sensor based on

the pixel reported here [20].

Kramer et al. [7], [21] reported the predecessors to the chip

described here. The problem with these devices that led to the

present development is mismatch in the transistor feedback el-

ements, which makes it difficult to set a low contrast threshold

across a large array. In addition, the leakage current in the

feedback element results in a significantly non-zero corner

frequency, i.e., the devices could not be adjusted to respond to

very slow changes.

II. VISION SENSOR DESIGN

This section will describe the vision sensor design, starting

with the pixel and then more briefly describing the rest of the

chip design.

A. Pixel Design

The objective for this pixel design was to achieve low mis-

match, wide dynamic range, and low latency in a reasonable

pixel area. We met these challenges with a fast logarithmic pho-

toreceptor circuit, a differencing circuit that amplifies changes

with high precision, and cheap two-transistor comparators.

Fig. 1(a) shows how these three components are connected.

The photoreceptor circuit has the desirable properties that it

automatically controls individual pixel gain (by its logarithmic

response) while at the same time responding quickly to changes

in illumination. The drawback of this photoreceptor circuit is

that transistor threshold variation causes substantial DC mis-

match between pixels, necessitating calibration when this output

is used directly [22], [23].

The DC mismatch is removed by balancing the output of the

differencing circuit to a reset level after the generation of an

event. The gain of the change amplification is determined by

the well-matched capacitor ratio . The effect of inevitable

comparator mismatch is reduced by the precise gain of the dif-

ferencing circuit.

Fig. 1. (a) Abstracted pixel schematic. (b) Principle of operation. In (a), the

inverters are symbols for single-ended inverting amplifiers.

Because the differencing circuit removes DC and due to the

logarithmic conversion in the photoreceptor, the pixel is sensi-

tive to temporal contrast , which we define as

(1)

where is the photocurrent. (The units of do not affect

). Fig. 2(b) illustrates the principle of operation of the

pixel. In the rest of this section, we will consider in detail the

operation of these component parts of the pixel circuit (Fig. 2).

The photoreceptor circuit comprises a photodiode whose

photocurrent is sourced by a saturated NMOS transistor .

The gate of is connected to the output of an inverting

amplifier (, ,) whose input is connected to the

photodiode. This well-known transimpedance configuration

(see, e.g., [24]) converts the photocurrent logarithmically into

a voltage and also holds the photodiode clamped at a virtual

ground. The bandwidth of the photoreceptor is extended by the

factor of the loop gain in comparison to a passive logarithmic

photoreceptor circuit. This extended bandwidth is beneficial for

high-speed applications, especially in low lighting conditions.

Additionally, this photoreceptor circuit includes the option

of adaptive biasing. Using a fraction of the low-pass-filtered

sum of the photocurrents of all pixels to directly generate the

bias voltage for [25] can reduce power consumption and

maintain a constant resonance (constant quality factor) of

the photoreceptor.

The photoreceptor output is buffered with a source fol-

lower to to isolate the sensitive photoreceptor from the rapid

transients in the differencing circuit. The source follower drives

the capacitive input of the differencing circuit. The following

(b)

Fig. 1. (a) First generation DVS sensor with 128 by

128 pixels [30]. (b) Principle of ON and OFF spikes

generation of DVS pixels, adapted from Lichtsteiner et al.

[30]. Top, the evolution of pixel’s voltage Vp proportional to

the log intensity. Below, the corresponding generation of

ON (voltage increases above change threshold) and OFF

(voltage decreases) events, from which the evolution of

Vp can be reconstructed.

The encoding of log intensity of light change implements

a form of local gain adaptation which allows them to work

over scene illuminations that range from 2 lux to over 100

klux. When events are transmitted off-chip, they are time-

stamped and then transmitted to a computer using a standard

USB connection.

3 EVENT-BASED VISUAL MOTION FLOW

The stream of events from the silicon retina can be mathemat-

ically defined as follows: let e(p, t) = (p, t)T a triplet giving

the position p = (x, y)T and the time t of an event. We can

then define the function Σe that maps to each p, the time t:

Σe : R2 → R3

p → t = Σe.
(1)

Time being an increasing function, Σe is then amonotonically

increasing surface.

X

Y

t

Σe

Σex

Σey

Σe(x,y)

x

y

Fig. 2. General principle of visual flow computation,

the surface of active events Σe is derived to provide an

estimation of orientation and amplitude of motion.

We then set the first partial derivatives with respect to the

parameters as: Σex
= ∂Σ e

∂ x
and Σey

= ∂Σ e

∂ y
.

We can then write Σe as:

Σe(p + ∆ p) = Σe(p) + ∇ ΣT
e ∆ p + o(||∆ p||), (2)

with ∇ Σe = (∂Σ e

∂ x
, ∂Σ e

∂ y
)T .

Thepartial functions of Σe are functions of asingle variable

whether x or y. Time being a strictly increasing function, Σe

is anonzero derivativessurfaceat any point. It is then possible

to use the inverse function theorem to write around a location

p = (x, y)T :

∂Σe

∂x
(x, y0) =

dΣe|y= y0

dx
(x) =

1

vx (x, y0)
,

∂Σe

∂y
(x0, y) =

dΣe|x= x 0

dy
(y) =

1

vy (x0, y)
,

(3)

Σe|x= x 0
, Σe|y= y0

being Σe restricted respectively to y and

x. The gradient ∇ Σe can then be written:

∇ Σe = (
1

vx

,
1

vy

)T , (4)

which provides the inverse of the pixellic velocity of events

vs time. ∂Σ e

∂ x
and ∂Σ e

∂ y
provide the measurement of the rate

and direction of change of time according to space namely

s/ pixels.

2

to artificial vision that intrinsically remains linked to the

frequency of the available cameras, generally not exceeding

60Hz. Most of the developed techniques are computationally

expensive and are mostly used off line.

2 NEUROMORPHIC SILICON RETINA

Biological retinas, unlike frame-based cameras, transmit less-

redundant information about avisual scene in an asynchronous

manner. The various functionalities of the retina have been

incorporated into neuromorphic vision sensors since the late

eighties in the pioneering work of Mahowald [28]. Since then,

the most interesting achievements in neuromorphic retinas’

has been the development of activity-driven sensing. The

event-based vision sensors output compressed digital data in

the form of events, removing redundancy, reducing latency

and increasing dynamic range as compared with conventional

imagers. A complete review of the history and existing sensors

can be found in [29]. The Dynamic Vision Sensor (DVS) used

in this work is an Address-Event Representation (AER) silicon

retina with 128 × 128 pixels [30]. The DVS output consists

of asynchronous address-events that signal scene reflectance

changes at the times they occur. Each pixel is independent

and detects changes in log intensity larger than a threshold

since the last emitted event (typically 15% contrast). As shown

in Fig. 1, when the change in log intensity exceeds a set

threshold, an ON or OFF event is generated by the pixel

depending on whether the log intensity increased or decreased.

The advantages of such a sensor, over conventional clocked

cameras, are that only moving objects produce data thus

reducing the load of post-processing. Additionally, the timing

of events can be conveyed with very low latency and accurate

temporal resolution of 1µs. Thus the ”effective frame rate” is

typically several kHz.

(a)

568 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 2, FEBRUARY 2008

dynamic range and absolute—rather than relative—illumina-

tion-change threshold, meaning that the single threshold is only

useful when the scene illumination is very uniform. It is also

frame based, so the event times are quantized to the limited

global sample rate.

Culurciello and Andreou [15] reported several imaging sen-

sors that use AER to communicate the pixel intensity, either by

inter-event interval or mean frequency. They have the advan-

tage of relatively small pixel size, but the big disadvantage that

the bus bandwidth is allocated according to the local scene lu-

minance. Because there is no reset mechanism and because the

event interval directly encodes intensity, a dark pixel can take a

long time to emit an event, and a single highlight in the scene

can saturate the bus.

Other recent developments include the time-to-first-spike

(TTFS) imager [16] and the time-based imager [17] from

Harris’s group, a foveated AER vision sensor [18] from

Häfliger’s group a spatial-contrast AER retina [19] with

in-pixel digitally programmed offset current calibration from

Linares-Barranco’s group, and a double line sensor based on

the pixel reported here [20].

Kramer et al. [7], [21] reported the predecessors to the chip

described here. The problem with these devices that led to the

present development is mismatch in the transistor feedback el-

ements, which makes it difficult to set a low contrast threshold

across a large array. In addition, the leakage current in the

feedback element results in a significantly non-zero corner

frequency, i.e., the devices could not be adjusted to respond to

very slow changes.

II. VISION SENSOR DESIGN

This section will describe the vision sensor design, starting

with the pixel and then more briefly describing the rest of the

chip design.

A. Pixel Design

The objective for this pixel design was to achieve low mis-

match, wide dynamic range, and low latency in a reasonable

pixel area. We met these challenges with a fast logarithmic pho-

toreceptor circuit, a differencing circuit that amplifies changes

with high precision, and cheap two-transistor comparators.

Fig. 1(a) shows how these three components are connected.

The photoreceptor circuit has the desirable properties that it

automatically controls individual pixel gain (by its logarithmic

response) while at the same time responding quickly to changes

in illumination. The drawback of this photoreceptor circuit is

that transistor threshold variation causes substantial DC mis-

match between pixels, necessitating calibration when this output

is used directly [22], [23].

The DC mismatch is removed by balancing the output of the

differencing circuit to a reset level after the generation of an

event. The gain of the change amplification is determined by

the well-matched capacitor ratio . The effect of inevitable

comparator mismatch is reduced by the precise gain of the dif-

ferencing circuit.

Fig. 1. (a) Abstracted pixel schematic. (b) Principle of operation. In (a), the
inverters are symbols for single-ended inverting amplifiers.

Because the differencing circuit removes DC and due to the

logarithmic conversion in the photoreceptor, the pixel is sensi-

tive to temporal contrast , which we define as

(1)

where is the photocurrent. (The units of do not affect

). Fig. 2(b) illustrates the principle of operation of the

pixel. In the rest of this section, we will consider in detail the

operation of these component parts of the pixel circuit (Fig. 2).

The photoreceptor circuit comprises a photodiode whose

photocurrent is sourced by a saturated NMOS transistor .

The gate of is connected to the output of an inverting

amplifier (, ,) whose input is connected to the

photodiode. This well-known transimpedance configuration

(see, e.g., [24]) converts the photocurrent logarithmically into

a voltage and also holds the photodiode clamped at a virtual

ground. The bandwidth of the photoreceptor is extended by the

factor of the loop gain in comparison to a passive logarithmic

photoreceptor circuit. This extended bandwidth is beneficial for

high-speed applications, especially in low lighting conditions.

Additionally, this photoreceptor circuit includes the option

of adaptive biasing. Using a fraction of the low-pass-filtered

sum of the photocurrents of all pixels to directly generate the

bias voltage for [25] can reduce power consumption and

maintain a constant resonance (constant quality factor) of

the photoreceptor.

The photoreceptor output is buffered with a source fol-

lower to to isolate the sensitive photoreceptor from the rapid

transients in the differencing circuit. The source follower drives

the capacitive input of the differencing circuit. The following

(b)

Fig. 1. (a) First generation DVS sensor with 128 by

128 pixels [30]. (b) Principle of ON and OFF spikes

generation of DVS pixels, adapted from Lichtsteiner et al.

[30]. Top, the evolution of pixel’s voltage Vp proportional to

the log intensity. Below, the corresponding generation of

ON (voltage increases above change threshold) and OFF

(voltage decreases) events, from which the evolution of

Vp can be reconstructed.

The encoding of log intensity of light change implements

a form of local gain adaptation which allows them to work

over scene illuminations that range from 2 lux to over 100

klux. When events are transmitted off-chip, they are time-

stamped and then transmitted to a computer using a standard

USB connection.

3 EVENT-BASED VISUAL MOTION FLOW

The stream of events from the silicon retina can be mathemat-

ically defined as follows: let e(p, t) = (p, t)T a triplet giving

the position p = (x, y)T and the time t of an event. We can

then define the function Σe that maps to each p, the time t:

Σe : R2 → R3

p → t = Σe.
(1)

Time being an increasing function, Σe is then a monotonically

increasing surface.

X

Y

t

Σe

Σex

Σey

Σe(x,y)

x

y

Fig. 2. General principle of visual flow computation,

the surface of active events Σe is derived to provide an

estimation of orientation and amplitude of motion.

We then set the first partial derivatives with respect to the

parameters as: Σex
= ∂Σ e

∂ x
and Σey

= ∂Σ e

∂ y
.

We can then write Σe as:

Σe(p + ∆ p) = Σe(p) + ∇ ΣT
e ∆ p + o(||∆ p ||), (2)

with ∇ Σe = (∂Σ e

∂ x
, ∂Σ e

∂ y
)T .

The partial functions of Σe are functions of a single variable

whether x or y. Time being a strictly increasing function, Σe

is a nonzero derivatives surface at any point. It is then possible

to use the inverse function theorem to write around a location

p = (x, y)T :

∂Σe

∂x
(x, y0) =

dΣe|y= y0

dx
(x) =

1

vx (x, y0)
,

∂Σe

∂y
(x0, y) =

dΣe|x = x 0

dy
(y) =

1

vy (x0, y)
,

(3)

Σe|x= x 0
, Σe|y= y0

being Σe restricted respectively to y and

x. The gradient ∇ Σe can then be written:

∇ Σe = (
1

vx

,
1

vy

)T , (4)

which provides the inverse of the pixellic velocity of events

vs time. ∂Σ e

∂ x
and ∂Σ e

∂ y
provide the measurement of the rate

and direction of change of time according to space namely

s/ pi xels.

2

to artificial vision that intrinsically remains linked to the

frequency of the available cameras, generally not exceeding

60Hz. Most of the developed techniques are computationally

expensive and are mostly used off line.

2 NEUROMORPHIC SILICON RETINA

Biological retinas, unlike frame-based cameras, transmit less-

redundant information about avisual scene in an asynchronous

manner. The various functionalities of the retina have been

incorporated into neuromorphic vision sensors since the late

eighties in the pioneering work of Mahowald [28]. Since then,

the most interesting achievements in neuromorphic retinas’

has been the development of activity-driven sensing. The

event-based vision sensors output compressed digital data in

the form of events, removing redundancy, reducing latency

and increasing dynamic range as compared with conventional

imagers. A complete review of the history and existing sensors

can be found in [29]. The Dynamic Vision Sensor (DVS) used

in this work is an Address-Event Representation (AER) silicon

retina with 128 × 128 pixels [30]. The DVS output consists

of asynchronous address-events that signal scene reflectance

changes at the times they occur. Each pixel is independent

and detects changes in log intensity larger than a threshold

since the last emitted event (typically 15% contrast). As shown

in Fig. 1, when the change in log intensity exceeds a set

threshold, an ON or OFF event is generated by the pixel

depending on whether the log intensity increased or decreased.

The advantages of such a sensor, over conventional clocked

cameras, are that only moving objects produce data thus

reducing the load of post-processing. Additionally, the timing

of events can be conveyed with very low latency and accurate

temporal resolution of 1µs. Thus the ”effective frame rate” is

typically several kHz.

(a)

568 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 2, FEBRUARY 2008

dynamic range and absolute—rather than relative—illumina-

tion-change threshold, meaning that the single threshold is only

useful when the scene illumination is very uniform. It is also

frame based, so the event times are quantized to the limited

global sample rate.

Culurciello and Andreou [15] reported several imaging sen-

sors that use AER to communicate the pixel intensity, either by

inter-event interval or mean frequency. They have the advan-

tage of relatively small pixel size, but the big disadvantage that

the bus bandwidth is allocated according to the local scene lu-

minance. Because there is no reset mechanism and because the

event interval directly encodes intensity, a dark pixel can take a

long time to emit an event, and a single highlight in the scene

can saturate the bus.

Other recent developments include the time-to-first-spike

(TTFS) imager [16] and the time-based imager [17] from

Harris’s group, a foveated AER vision sensor [18] from

Häfliger’s group a spatial-contrast AER retina [19] with

in-pixel digitally programmed offset current calibration from

Linares-Barranco’s group, and a double line sensor based on

the pixel reported here [20].

Kramer et al. [7], [21] reported the predecessors to the chip

described here. The problem with these devices that led to the

present development is mismatch in the transistor feedback el-

ements, which makes it difficult to set a low contrast threshold

across a large array. In addition, the leakage current in the

feedback element results in a significantly non-zero corner

frequency, i.e., the devices could not be adjusted to respond to

very slow changes.

II. VISION SENSOR DESIGN

This section will describe the vision sensor design, starting

with the pixel and then more briefly describing the rest of the

chip design.

A. Pixel Design

The objective for this pixel design was to achieve low mis-

match, wide dynamic range, and low latency in a reasonable

pixel area. We met these challenges with a fast logarithmic pho-

toreceptor circuit, a differencing circuit that amplifies changes

with high precision, and cheap two-transistor comparators.

Fig. 1(a) shows how these three components are connected.

The photoreceptor circuit has the desirable properties that it

automatically controls individual pixel gain (by its logarithmic

response) while at the same time responding quickly to changes

in illumination. The drawback of this photoreceptor circuit is

that transistor threshold variation causes substantial DC mis-

match between pixels, necessitating calibration when this output

is used directly [22], [23].

The DC mismatch is removed by balancing the output of the

differencing circuit to a reset level after the generation of an

event. The gain of the change amplification is determined by

the well-matched capacitor ratio . The effect of inevitable

comparator mismatch is reduced by the precise gain of the dif-

ferencing circuit.

Fig. 1. (a) Abstracted pixel schematic. (b) Principle of operation. In (a), the
inverters are symbols for single-ended inverting amplifiers.

Because the differencing circuit removes DC and due to the

logarithmic conversion in the photoreceptor, the pixel is sensi-

tive to temporal contrast , which we define as

(1)

where is the photocurrent. (The units of do not affect

). Fig. 2(b) illustrates the principle of operation of the

pixel. In the rest of this section, we will consider in detail the

operation of these component parts of the pixel circuit (Fig. 2).

The photoreceptor circuit comprises a photodiode whose

photocurrent is sourced by a saturated NMOS transistor .

The gate of is connected to the output of an inverting

amplifier (, ,) whose input is connected to the

photodiode. This well-known transimpedance configuration

(see, e.g., [24]) converts the photocurrent logarithmically into

a voltage and also holds the photodiode clamped at a virtual

ground. The bandwidth of the photoreceptor is extended by the

factor of the loop gain in comparison to a passive logarithmic

photoreceptor circuit. This extended bandwidth is beneficial for

high-speed applications, especially in low lighting conditions.

Additionally, this photoreceptor circuit includes the option

of adaptive biasing. Using a fraction of the low-pass-filtered

sum of the photocurrents of all pixels to directly generate the

bias voltage for [25] can reduce power consumption and

maintain a constant resonance (constant quality factor) of

the photoreceptor.

The photoreceptor output is buffered with a source fol-

lower to to isolate the sensitive photoreceptor from the rapid

transients in the differencing circuit. The source follower drives

the capacitive input of the differencing circuit. The following

(b)

Fig. 1. (a) First generation DVS sensor with 128 by

128 pixels [30]. (b) Principle of ON and OFF spikes

generation of DVS pixels, adapted from Lichtsteiner et al.

[30]. Top, the evolution of pixel’s voltage Vp proportional to

the log intensity. Below, the corresponding generation of

ON (voltage increases above change threshold) and OFF

(voltage decreases) events, from which the evolution of

Vp can be reconstructed.

The encoding of log intensity of light change implements

a form of local gain adaptation which allows them to work

over scene illuminations that range from 2 lux to over 100

klux. When events are transmitted off-chip, they are time-

stamped and then transmitted to a computer using a standard

USB connection.

3 EVENT-BASED VISUAL MOTION FLOW

The stream of events from the silicon retina can be mathemat-

ically defined as follows: let e(p, t) = (p, t)T a triplet giving

the position p = (x, y)T and the time t of an event. We can

then define the function Σe that maps to each p, the time t:

Σe : R2 → R3

p → t = Σe.
(1)

Time being an increasing function, Σe is then a monotonically

increasing surface.

X

Y

t

Σe

Σex

Σey

Σe(x,y)

x

y

Fig. 2. General principle of visual flow computation,

the surface of active events Σe is derived to provide an

estimation of orientation and amplitude of motion.

We then set the first partial derivatives with respect to the

parameters as: Σex
= ∂Σ e

∂ x
and Σey

= ∂Σ e

∂ y
.

We can then write Σe as:

Σe(p + ∆ p) = Σe(p) + ∇ ΣT
e ∆ p + o(||∆ p||), (2)

with ∇ Σe = (∂Σ e

∂ x
, ∂Σ e

∂ y
)T .

The partial functions of Σe are functions of asingle variable

whether x or y. Time being a strictly increasing function, Σe

is a nonzero derivatives surface at any point. It is then possible

to use the inverse function theorem to write around a location

p = (x, y)T :

∂Σe

∂x
(x, y0) =

dΣe|y= y0

dx
(x) =

1

vx (x, y0)
,

∂Σe

∂y
(x0, y) =

dΣe|x = x 0

dy
(y) =

1

vy (x0, y)
,

(3)

Σe|x = x 0
, Σe|y= y0

being Σe restricted respectively to y and

x. The gradient ∇ Σe can then be written:

∇ Σe = (
1

vx

,
1

vy

)T , (4)

which provides the inverse of the pixellic velocity of events

vs time. ∂Σ e

∂ x
and ∂Σ e

∂ y
provide the measurement of the rate

and direction of change of time according to space namely

s/ pi xels.

For an incoming event :

Form the surface (event times):

We then have:

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2014 407

Event-Based Visual Flow
Ryad Benosman, Charles Clercq, Xavier Lagorce, Sio-Hoi Ieng, and Chiara Bartolozzi

Abstract—This paper introduces a new methodology to com-

pute dense visual flow using the precise timings of spikes from
an asynchronous event-based retina. Biological retinas, and their

artificial counterparts, are totally asynchronous and data-driven

and rely on a paradigm of light acquisition radically different

from most of the currently used frame-grabber technologies.

This paper introduces a framework to estimate visual flow from
the local properties of events’ spatiotemporal space. We will

show that precise visual flow orientation and amplitude can

be estimated using a local differential approach on the surface

defined by coactive events. Experimental results are presented;

they show the method adequacy with high data sparseness and

temporal resolution of event-based acquisition that allows the

computation of motion flow with microsecond accuracy and at

very low computational cost.

Index Terms—Event-based vision, event-based visual motion

flow, neuromorphic sensors, real time.

I. INTRODUCTION

R
ECENT work in this paper of neural activity has shown

that each spike arrival time is reliable [1]–[4]. However,

the extent to which the precise timing of neural spikes down

to millisecond precision is significant for computation is still a

matter of debate. In this paper, we address this issue by focus-

ing on the computational principles that could be operated

by motion-sensitive neurons of the visual system to compute

the visual flow. We bring together new experimental sensors

delivering truly naturalistic precise timed visual outputs and a

new mathematical method that allows to compute event-based

visual motion flow using each incoming spike’s timing as main

computation feature. This presented method does not rely on

gray levels, nor on the integration of activity over long time

intervals. It uses each relative timing of changes of individual

pixel’s responses to visual stimuli as a computational input.

This paper builds on recent achievements of neuromorphic

engineering, exploiting the unique characteristics of a novel

family of asynchronous image sensors [5]–[8]. The increasing

availability and, most importantly, the steadily improving

quality of these sensors open up the potential to introduce a

shift in the methodology of acquiring and processing visual

Manuscript received June 19, 2012; revised March 25, 2013; accepted
June 22, 2013. Date of publication September 5, 2013; date of current version
January 10, 2014. This work was supported by the European Grant eMorph
under Grant ICT-FET 231467.

R. Benosman is with the Institut de la Vision, University Pierre and Marie
Curie, Paris 75252 cedex 05, France, and also with the DIST, University of
Genova, Genova 16121, Italy (e-mail: ryad.benosman@upmc.fr).

C. Clercq and C. Bartolozzi are with the Department of Robotics, Istituto
Italiano di Tecnologia, Genoa 16163, Italy (e-mail: charles.clercq@iit.it;
chiara.bartolozzi@iit.it).

X. Lagorce and S.-H. Ieng are with the Insitut de la Vision, University Pierre
and Marie Curie, Paris 75252 cedex 05, France (e-mail: sio-hoi.ieng@upmc.fr;
Xavier.Lagorce@crans.org).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2013.2273537

information in various demanding, machine vision applica-

tions [9]–[15]. The microsecond temporal resolution and the

inherent redundancy suppression of the frame-free, event-

driven acquisition and subsequent representation of visual

information employed by these cameras enables to derive a

novel methodology to process the visual information at a very

high speed and with low computational cost.

Visual flow is a topic of several research fields that has

been intensively studied since the early days of computational

neuroscience. It is widely used in artificial vision and essential

in navigation. Visual flow is known to be an ill-posed noisy

visual measure limited by the aperture problem. Its use in real-

time applications on natural scenes is generally difficult. It is

usually computed sparsely on high salient points.

Visual flow techniques are commonly classified under one of

the four major categories.

1) Energy-based or frequency-based methods estimate opti-

cal flow from the output of the velocity-tuned filters

designed in the Fourier domain [16]–[18].

2) Phase-based methods estimate image velocity in terms

of band-pass filter outputs [19].

3) Correlation-based or region-matching methods search

for a best match of small spatial neighborhoods between

adjacent frames [20]–[25].

4) Gradient-based or differential methods use spatiotem-

poral image intensity derivatives and an assumption of

brightness constancy [26]–[28].

Energy-based techniques are slow [19] and are not adequate

for real-time applications where gradient-based approaches

perform better, as they rely on correlations. Visual flow

is generally slow and does not exceed several Hertz on

dense input. There are existing solutions to speed up the

computation according to a tradeoff between accuracy and

efficiency [29]. Preprocessing stages and kernel differenti-

ation are often needed but they affect drastically real-time

performance. In this case, accuracy is linked to the size

of kernels that inevitably influences the execution time. If

temporal kernels are used, then the buffering of images needed

to perform computation dramatically increases the amount

of stored data and introduces additional time delay in the

computation.

The high computational cost of all of the approaches

described previously are not suitable for real-time applications.

Frame-based flow computation using large temporal windows

is not compatible with the temporal precision of biological

sensors that respond with 1 ms precision. The same obser-

vation applies to artificial vision that intrinsically remains

linked to the frequency of the available cameras, generally

not exceeding 60 Hz. Most of the developed techniques are

computationally expensive and are mostly used OFF-line.

2162-237X © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

31

Event Flow

32

• High temporal resolution generates smooth space-time

surfaces

• The slope of the local surface contains the orientation and

amplitude of the optical flow

Motion estimation: optical flowEvent Flow

33

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2014 407

Event-Based Visual Flow
Ryad Benosman, Charles Clercq, Xavier Lagorce, Sio-Hoi Ieng, and Chiara Bartolozzi

Abstract—This paper introduces a new methodology to com-

pute dense visual flow using the precise timings of spikes from
an asynchronous event-based retina. Biological retinas, and their

artificial counterparts, are totally asynchronous and data-driven

and rely on a paradigm of light acquisition radically different

from most of the currently used frame-grabber technologies.

This paper introduces a framework to estimate visual flow from
the local properties of events’ spatiotemporal space. We will

show that precise visual flow orientation and amplitude can

be estimated using a local differential approach on the surface

defined by coactive events. Experimental results are presented;

they show the method adequacy with high data sparseness and

temporal resolution of event-based acquisition that allows the

computation of motion flow with microsecond accuracy and at

very low computational cost.

Index Terms—Event-based vision, event-based visual motion

flow, neuromorphic sensors, real time.

I. INTRODUCTION

R
ECENT work in this paper of neural activity has shown

that each spike arrival time is reliable [1]–[4]. However,

the extent to which the precise timing of neural spikes down

to millisecond precision is significant for computation is still a

matter of debate. In this paper, we address this issue by focus-

ing on the computational principles that could be operated

by motion-sensitive neurons of the visual system to compute

the visual flow. We bring together new experimental sensors

delivering truly naturalistic precise timed visual outputs and a

new mathematical method that allows to compute event-based

visual motion flow using each incoming spike’s timing as main

computation feature. This presented method does not rely on

gray levels, nor on the integration of activity over long time

intervals. It uses each relative timing of changes of individual

pixel’s responses to visual stimuli as a computational input.

This paper builds on recent achievements of neuromorphic

engineering, exploiting the unique characteristics of a novel

family of asynchronous image sensors [5]–[8]. The increasing

availability and, most importantly, the steadily improving

quality of these sensors open up the potential to introduce a

shift in the methodology of acquiring and processing visual

Manuscript received June 19, 2012; revised March 25, 2013; accepted
June 22, 2013. Date of publication September 5, 2013; date of current version
January 10, 2014. This work was supported by the European Grant eMorph
under Grant ICT-FET 231467.

R. Benosman is with the Institut de la Vision, University Pierre and Marie
Curie, Paris 75252 cedex 05, France, and also with the DIST, University of
Genova, Genova 16121, Italy (e-mail: ryad.benosman@upmc.fr).

C. Clercq and C. Bartolozzi are with the Department of Robotics, Istituto
Italiano di Tecnologia, Genoa 16163, Italy (e-mail: charles.clercq@iit.it;
chiara.bartolozzi@iit.it).

X. Lagorce and S.-H. Ieng are with the Insitut de la Vision, University Pierre
and Marie Curie, Paris 75252 cedex 05, France (e-mail: sio-hoi.ieng@upmc.fr;
Xavier.Lagorce@crans.org).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2013.2273537

information in various demanding, machine vision applica-

tions [9]–[15]. The microsecond temporal resolution and the

inherent redundancy suppression of the frame-free, event-

driven acquisition and subsequent representation of visual

information employed by these cameras enables to derive a

novel methodology to process the visual information at a very

high speed and with low computational cost.

Visual flow is a topic of several research fields that has

been intensively studied since the early days of computational

neuroscience. It is widely used in artificial vision and essential

in navigation. Visual flow is known to be an ill-posed noisy

visual measure limited by the aperture problem. Its use in real-

time applications on natural scenes is generally difficult. It is

usually computed sparsely on high salient points.

Visual flow techniques are commonly classified under one of

the four major categories.

1) Energy-based or frequency-based methods estimate opti-

cal flow from the output of the velocity-tuned filters

designed in the Fourier domain [16]–[18].

2) Phase-based methods estimate image velocity in terms

of band-pass filter outputs [19].

3) Correlation-based or region-matching methods search

for a best match of small spatial neighborhoods between

adjacent frames [20]–[25].

4) Gradient-based or differential methods use spatiotem-

poral image intensity derivatives and an assumption of

brightness constancy [26]–[28].

Energy-based techniques are slow [19] and are not adequate

for real-time applications where gradient-based approaches

perform better, as they rely on correlations. Visual flow

is generally slow and does not exceed several Hertz on

dense input. There are existing solutions to speed up the

computation according to a tradeoff between accuracy and

efficiency [29]. Preprocessing stages and kernel differenti-

ation are often needed but they affect drastically real-time

performance. In this case, accuracy is linked to the size

of kernels that inevitably influences the execution time. If

temporal kernels are used, then the buffering of images needed

to perform computation dramatically increases the amount

of stored data and introduces additional time delay in the

computation.

The high computational cost of all of the approaches

described previously are not suitable for real-time applications.

Frame-based flow computation using large temporal windows

is not compatible with the temporal precision of biological

sensors that respond with 1 ms precision. The same obser-

vation applies to artificial vision that intrinsically remains

linked to the frequency of the available cameras, generally

not exceeding 60 Hz. Most of the developed techniques are

computationally expensive and are mostly used OFF-line.

2162-237X © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

34

Tracking Real-Time Outdoor Scenes

Z. Ni, S.H. Ieng, C. Posch, S. Regnier, R.B. Benosman, Visual Tracking using Neuromorphic Asynchronous Event-based Cameras, 24

February 2015 Neural Computation 27(4) :925-53, DOI : 10.1162/NECO-a-00720
35

spatio-temporal planes constrains strongly the neighborhood by discarding pos-

sible wrong assignments and more robustness to noise. It is interesting to notice

that errorsaremoreequally shared between thevan and thecar thanksto themore

reliable event attribution.

Figure 16: The events generated by the van and the car during 3s are fitted into two

planes, denoted as P1 in blue and P2 in red. n1 and n2 are the surface normals.

Theexclusiveuseof spatial data ignoring timelogically implies lessavailable infor-

mation. Thedynamic content of visual information is then lost. On theother hand, time

alone isnot sufficient to overcome all ambiguities. Theevents rateprovides incomplete

information on thescene. Thecombination of both spaceand timeisthen likely leading

36

Tracking Real-Time Outdoor Scenes

Z. Ni, S.H. Ieng, C. Posch, S. Regnier, R.B. Benosman, Visual Tracking using Neuromorphic Asynchronous Event-based Cameras, 24

February 2015 Neural Computation 27(4) :925-53, DOI : 10.1162/NECO-a-00720
36

Event-Based Tracking with a Moving Camera

Z. Ni, S.H. Ieng, C. Posch, S. Regnier, R.B. Benosman, Visual Tracking using Neuromorphic Asynchronous Event-based Cameras, 24

February 2015 Neural Computation 27(4) :925-53, DOI : 10.1162/NECO-a-00720
37

Event-Based 3D Tracking and Pose Estimation

D. Reverter-Valeiras, G. Orchard, S.H. Ieng, R.B. Benosman,Neuromorphic Event-Based 3D Pose Estimation, 2016 January 22, Frontiers in Neuromorphic

9(522), DOI : 10.3389/fnins.2015.00522

38

Low Power and Latency Streaming

39

Asynchronous Event-Based Fourrier Analysis

Q. Sabatier, S.H. Ieng, R.B. Benosman, Asynchronous Event-based Fourier Analysis, 2017 February 6, IEEE Transactions on Image

Processing 26 (5) :2192-2202, DOI : 10.1109/TIP.2017.2661702

40

Last Two Decades: Rethinking Computer Vision in The Time Domain

(c) Spat io-tem poral dom ain
(e) Exponent ial kernels

(b) Events from the sensor

(f) Tim e surface

(d) Tim e context

(a) Event -driven t im e-based

 vision sensor (ATIS or DVS)

Context am plitude

surface am plitude

X (spat ial)

Y
 (sp

a
t ia

l)

ON events OFF events

Deep Temporal Learning: Time Surfaces

Time Surface

P
ix

e
ls

X. Lagorce, G. Orchard, F. Galluppi, B. E. Shi, R.B. Benosman, HOTS : A Hierarchy Of event- based Time-Surfaces for pattern recognition, 2016

July 11, IEEE Transaction on Pattern Analysis and Machine Intelligence 39(7) :1346-1359, doi :10.1109/TPAMI.2016.2574707
42

a recognition process. When alternatives with a barely dis-
cernible difference in their sensory inputs are presented over
an extended period of time, longer time and spatial integra-
tion scales can accumulate the small differences over time
until it becomes eventually possible to discriminate the alter-
natives through its ever growing output. This accumulation
dynamics is at the heart of the Hierarchy Of Time-Surfaces
(HOTS)model, the difference between time scales can be sub-
stantial and can start from 50 ms for Layer 1 to 250 ms for
Layer 2 to finally reach 1.25 s for Layer 3.

Layer 3 receives input from Layer 2, it is the last layer
of the system and it provides the highest level informa-
tion integration, as shown in Fig. 4i time-surface proto-
types are also larger both spatially and temporally. The
output of the temporal activity of Layer 3 can finally be
used for object recognition by being fed to a classifier
(shown in Fig. 4j).

As stated above, each layer is then defined by only a few
parameters (we add an index l for the lth layer of the
system):

! Rl; which defines the size of the time-surface
neighborhood

! tl; the time constant of the exponential kernel
applied to events

! Nl; the number of cluster centers (prototypes) learnt
by the clustering algorithm.

To increase the information extracted by each subsequent
layer, we make these parameters evolve between subse-
quent layer. For each layer, we define the parameters KR,
Kt ,KN so that

Rlþ1 ¼ KR $ Rl (9)

tlþ1 ¼ Kt $ tl (10)

Nlþ1 ¼ KN $Nl: (11)

The obtained architecture consists in a Hierarchy Of
Time-Surfaces which is building and extracting a set of fea-
tures (the prototypes from the final layer) out of a stream of
input events. The time-surface prototypes will then be
called time-surface features in the rest of the paper.

Fig. 3 shows what these features could be for the first
layer of the achitecture where its input basis is constituted
of only two vectors: ON events and OFF events. The other
layers have input bases constituted of more vectors (as
many as the number of features extracted by their previous
layer), thus we could represent their features by a series of
surfaces each corresponding to one feature of the previous
layer. Because this representation is harder to relate to the
actual input from the camera activating the feature, we
chose to fuse these surfaces into their corresponding activ-
ity of ON and OFF events. The features of every layer of
the architecture will then be represented as a set of two
surfaces such as in Fig. 3, showing an image of the activity
of ON and OFF events associated to the feature, this what
is represented Fig. 4 in the gray boxes representing the dif-
ferent layers.

3.4 Classification
In this section we describe how the output of Layer 3 can be
used as features for object recognition. Training of the rec-
ognition algorithm consists of two main steps. In the first
step, different stimuli are presented to the model to learn
the time-surface prototypes (referred to in the next sections
as features) computed as described in the previous section.

Fig. 4. View of the proposed hierarchical model. From left to right, a moving digit (a) is presented to the ATIS camera (b) which produces ON and OFF
events (c) which are fed into Layer 1. The events are convolved with exponential kernels (d) to build event contexts from spatial receptive field of side-
length ð2R1 þ 1Þ. These contexts are clustered into N1 features (e). When a feature is matched, it produces an event (f). Events from the N1 features
constitute the output of the layer (g). Each layer k (gray boxes) takes input from its previous layer and feeds the next by reproducing steps (d)-(g).
The output of Layer k is presented between Layer k and kþ 1 ((g),(h),(i)). To compute event contexts, each layer considers a receptive field of side-
length ð2Rk þ 1Þ around each pixel. The event contexts are compared to the different features (represented as surfaces in the gray boxes as
explained in Section 3.3) and the closest one is matched. The images next to each features show the activation of their associated features in each
layer. These activations constitute the output of the layer. The output (i) of the last layer is then fed to the classifier (j) which will recognize the object.

1350 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 7, JULY 2017

a recognition process. When alternatives with a barely dis-
cernible difference in their sensory inputs are presented over
an extended period of time, longer time and spatial integra-
tion scales can accumulate the small differences over time
until it becomes eventually possible to discriminate the alter-
natives through its ever growing output. This accumulation
dynamics is at the heart of the Hierarchy Of Time-Surfaces
(HOTS)model, the difference between time scales can be sub-
stantial and can start from 50 ms for Layer 1 to 250 ms for
Layer 2 to finally reach 1.25 s for Layer 3.

Layer 3 receives input from Layer 2, it is the last layer
of the system and it provides the highest level informa-
tion integration, as shown in Fig. 4i time-surface proto-
types are also larger both spatially and temporally. The
output of the temporal activity of Layer 3 can finally be
used for object recognition by being fed to a classifier
(shown in Fig. 4j).

As stated above, each layer is then defined by only a few
parameters (we add an index l for the lth layer of the
system):

! Rl; which defines the size of the time-surface
neighborhood

! tl; the time constant of the exponential kernel
applied to events

! Nl; the number of cluster centers (prototypes) learnt
by the clustering algorithm.

To increase the information extracted by each subsequent
layer, we make these parameters evolve between subse-
quent layer. For each layer, we define the parameters KR,
Kt ,KN so that

Rlþ1 ¼ KR $ Rl (9)

tlþ1 ¼ Kt $ tl (10)

Nlþ1 ¼ KN $Nl: (11)

The obtained architecture consists in a Hierarchy Of
Time-Surfaces which is building and extracting a set of fea-
tures (the prototypes from the final layer) out of a stream of
input events. The time-surface prototypes will then be
called time-surface features in the rest of the paper.

Fig. 3 shows what these features could be for the first
layer of the achitecture where its input basis is constituted
of only two vectors: ON events and OFF events. The other
layers have input bases constituted of more vectors (as
many as the number of features extracted by their previous
layer), thus we could represent their features by a series of
surfaces each corresponding to one feature of the previous
layer. Because this representation is harder to relate to the
actual input from the camera activating the feature, we
chose to fuse these surfaces into their corresponding activ-
ity of ON and OFF events. The features of every layer of
the architecture will then be represented as a set of two
surfaces such as in Fig. 3, showing an image of the activity
of ON and OFF events associated to the feature, this what
is represented Fig. 4 in the gray boxes representing the dif-
ferent layers.

3.4 Classification
In this section we describe how the output of Layer 3 can be
used as features for object recognition. Training of the rec-
ognition algorithm consists of two main steps. In the first
step, different stimuli are presented to the model to learn
the time-surface prototypes (referred to in the next sections
as features) computed as described in the previous section.

Fig. 4. View of the proposed hierarchical model. From left to right, a moving digit (a) is presented to the ATIS camera (b) which produces ON and OFF
events (c) which are fed into Layer 1. The events are convolved with exponential kernels (d) to build event contexts from spatial receptive field of side-
length ð2R1 þ 1Þ. These contexts are clustered into N1 features (e). When a feature is matched, it produces an event (f). Events from the N1 features
constitute the output of the layer (g). Each layer k (gray boxes) takes input from its previous layer and feeds the next by reproducing steps (d)-(g).
The output of Layer k is presented between Layer k and kþ 1 ((g),(h),(i)). To compute event contexts, each layer considers a receptive field of side-
length ð2Rk þ 1Þ around each pixel. The event contexts are compared to the different features (represented as surfaces in the gray boxes as
explained in Section 3.3) and the closest one is matched. The images next to each features show the activation of their associated features in each
layer. These activations constitute the output of the layer. The output (i) of the last layer is then fed to the classifier (j) which will recognize the object.

1350 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 7, JULY 2017

a recognition process. When alternatives with a barely dis-
cernible difference in their sensory inputs are presented over
an extended period of time, longer time and spatial integra-
tion scales can accumulate the small differences over time
until it becomes eventually possible to discriminate the alter-
natives through its ever growing output. This accumulation
dynamics is at the heart of the Hierarchy Of Time-Surfaces
(HOTS)model, the difference between time scales can be sub-
stantial and can start from 50 ms for Layer 1 to 250 ms for
Layer 2 to finally reach 1.25 s for Layer 3.

Layer 3 receives input from Layer 2, it is the last layer
of the system and it provides the highest level informa-
tion integration, as shown in Fig. 4i time-surface proto-
types are also larger both spatially and temporally. The
output of the temporal activity of Layer 3 can finally be
used for object recognition by being fed to a classifier
(shown in Fig. 4j).

As stated above, each layer is then defined by only a few
parameters (we add an index l for the lth layer of the
system):

! Rl; which defines the size of the time-surface
neighborhood

! tl; the time constant of the exponential kernel
applied to events

! Nl; the number of cluster centers (prototypes) learnt
by the clustering algorithm.

To increase the information extracted by each subsequent
layer, we make these parameters evolve between subse-
quent layer. For each layer, we define the parameters KR,
Kt ,KN so that

Rlþ1 ¼ KR $ Rl (9)

tlþ1 ¼ Kt $ tl (10)

Nlþ1 ¼ KN $Nl: (11)

The obtained architecture consists in a Hierarchy Of
Time-Surfaces which is building and extracting a set of fea-
tures (the prototypes from the final layer) out of a stream of
input events. The time-surface prototypes will then be
called time-surface features in the rest of the paper.

Fig. 3 shows what these features could be for the first
layer of the achitecture where its input basis is constituted
of only two vectors: ON events and OFF events. The other
layers have input bases constituted of more vectors (as
many as the number of features extracted by their previous
layer), thus we could represent their features by a series of
surfaces each corresponding to one feature of the previous
layer. Because this representation is harder to relate to the
actual input from the camera activating the feature, we
chose to fuse these surfaces into their corresponding activ-
ity of ON and OFF events. The features of every layer of
the architecture will then be represented as a set of two
surfaces such as in Fig. 3, showing an image of the activity
of ON and OFF events associated to the feature, this what
is represented Fig. 4 in the gray boxes representing the dif-
ferent layers.

3.4 Classification
In this section we describe how the output of Layer 3 can be
used as features for object recognition. Training of the rec-
ognition algorithm consists of two main steps. In the first
step, different stimuli are presented to the model to learn
the time-surface prototypes (referred to in the next sections
as features) computed as described in the previous section.

Fig. 4. View of the proposed hierarchical model. From left to right, a moving digit (a) is presented to the ATIS camera (b) which produces ON and OFF
events (c) which are fed into Layer 1. The events are convolved with exponential kernels (d) to build event contexts from spatial receptive field of side-
length ð2R1 þ 1Þ. These contexts are clustered into N1 features (e). When a feature is matched, it produces an event (f). Events from the N1 features
constitute the output of the layer (g). Each layer k (gray boxes) takes input from its previous layer and feeds the next by reproducing steps (d)-(g).
The output of Layer k is presented between Layer k and kþ 1 ((g),(h),(i)). To compute event contexts, each layer considers a receptive field of side-
length ð2Rk þ 1Þ around each pixel. The event contexts are compared to the different features (represented as surfaces in the gray boxes as
explained in Section 3.3) and the closest one is matched. The images next to each features show the activation of their associated features in each
layer. These activations constitute the output of the layer. The output (i) of the last layer is then fed to the classifier (j) which will recognize the object.

1350 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 7, JULY 2017

a recognition process. When alternatives with a barely dis-
cernible difference in their sensory inputs are presented over
an extended period of time, longer time and spatial integra-
tion scales can accumulate the small differences over time
until it becomes eventually possible to discriminate the alter-
natives through its ever growing output. This accumulation
dynamics is at the heart of the Hierarchy Of Time-Surfaces
(HOTS)model, the difference between time scales can be sub-
stantial and can start from 50 ms for Layer 1 to 250 ms for
Layer 2 to finally reach 1.25 s for Layer 3.

Layer 3 receives input from Layer 2, it is the last layer
of the system and it provides the highest level informa-
tion integration, as shown in Fig. 4i time-surface proto-
types are also larger both spatially and temporally. The
output of the temporal activity of Layer 3 can finally be
used for object recognition by being fed to a classifier
(shown in Fig. 4j).

As stated above, each layer is then defined by only a few
parameters (we add an index l for the lth layer of the
system):

! Rl; which defines the size of the time-surface
neighborhood

! tl; the time constant of the exponential kernel
applied to events

! Nl; the number of cluster centers (prototypes) learnt
by the clustering algorithm.

To increase the information extracted by each subsequent
layer, we make these parameters evolve between subse-
quent layer. For each layer, we define the parameters KR,
Kt ,KN so that

Rlþ1 ¼ KR $ Rl (9)

tlþ1 ¼ Kt $ tl (10)

Nlþ1 ¼ KN $Nl: (11)

The obtained architecture consists in a Hierarchy Of
Time-Surfaces which is building and extracting a set of fea-
tures (the prototypes from the final layer) out of a stream of
input events. The time-surface prototypes will then be
called time-surface features in the rest of the paper.

Fig. 3 shows what these features could be for the first
layer of the achitecture where its input basis is constituted
of only two vectors: ON events and OFF events. The other
layers have input bases constituted of more vectors (as
many as the number of features extracted by their previous
layer), thus we could represent their features by a series of
surfaces each corresponding to one feature of the previous
layer. Because this representation is harder to relate to the
actual input from the camera activating the feature, we
chose to fuse these surfaces into their corresponding activ-
ity of ON and OFF events. The features of every layer of
the architecture will then be represented as a set of two
surfaces such as in Fig. 3, showing an image of the activity
of ON and OFF events associated to the feature, this what
is represented Fig. 4 in the gray boxes representing the dif-
ferent layers.

3.4 Classification
In this section we describe how the output of Layer 3 can be
used as features for object recognition. Training of the rec-
ognition algorithm consists of two main steps. In the first
step, different stimuli are presented to the model to learn
the time-surface prototypes (referred to in the next sections
as features) computed as described in the previous section.

Fig. 4. View of the proposed hierarchical model. From left to right, a moving digit (a) is presented to the ATIS camera (b) which produces ON and OFF
events (c) which are fed into Layer 1. The events are convolved with exponential kernels (d) to build event contexts from spatial receptive field of side-
length ð2R1 þ 1Þ. These contexts are clustered into N1 features (e). When a feature is matched, it produces an event (f). Events from the N1 features
constitute the output of the layer (g). Each layer k (gray boxes) takes input from its previous layer and feeds the next by reproducing steps (d)-(g).
The output of Layer k is presented between Layer k and kþ 1 ((g),(h),(i)). To compute event contexts, each layer considers a receptive field of side-
length ð2Rk þ 1Þ around each pixel. The event contexts are compared to the different features (represented as surfaces in the gray boxes as
explained in Section 3.3) and the closest one is matched. The images next to each features show the activation of their associated features in each
layer. These activations constitute the output of the layer. The output (i) of the last layer is then fed to the classifier (j) which will recognize the object.

1350 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 7, JULY 2017

<latexit sha1_base64="E0lXgR5y61QwpnHFZI9ZGbqt2ts=">AAACy3icjVHLSsNAFD2Nr1pfVZdugkVwVRJRdFl040aoYB/QljKZTmtomoRkItTq0h9wq/8l/oH+hXfGKahFdEKSM+eec2fuvV4c+Kl0nNecNTe/sLiUXy6srK6tbxQ3t+pplCVc1HgUREnTY6kI/FDUpC8D0YwTwUZeIBre8EzFGzciSf0ovJLjWHRGbBD6fZ8zSVSzLVlmd91Ct1hyyo5e9ixwDSjBrGpUfEEbPUTgyDCCQAhJOABDSk8LLhzExHUwIS4h5Ou4wD0K5M1IJUjBiB3Sd0C7lmFD2qucqXZzOiWgNyGnjT3yRKRLCKvTbB3PdGbF/pZ7onOqu43p75lcI2Ilron9yzdV/tenapHo40TX4FNNsWZUddxkyXRX1M3tL1VJyhATp3CP4glhrp3TPtvak+raVW+Zjr9ppWLVnhtthnd1Sxqw+3Ocs6B+UHaPys7lYalyakadxw52sU/zPEYF56iipuf4iCc8WxdWat1ad59SK2c82/i2rIcPBnaRrw==</latexit>⌧1

(c) Spatio-temporal domain (e) Exponential kernels

(b) Events from the sensor

(f) Time surface

(d) Time context

(a) Event-driven time-based
 vision sensor (ATIS or DVS)

Context amplitude

surface amplitude

X (spatial)

Y (spatial)

ON events OFF events

Clustering

a recognition process. When alternatives with a barely dis-
cernible difference in their sensory inputs are presented over
an extended period of time, longer time and spatial integra-
tion scales can accumulate the small differences over time
until it becomes eventually possible to discriminate the alter-
natives through its ever growing output. This accumulation
dynamics is at the heart of the Hierarchy Of Time-Surfaces
(HOTS)model, the difference between time scales can be sub-
stantial and can start from 50 ms for Layer 1 to 250 ms for
Layer 2 to finally reach 1.25 s for Layer 3.

Layer 3 receives input from Layer 2, it is the last layer
of the system and it provides the highest level informa-
tion integration, as shown in Fig. 4i time-surface proto-
types are also larger both spatially and temporally. The
output of the temporal activity of Layer 3 can finally be
used for object recognition by being fed to a classifier
(shown in Fig. 4j).

As stated above, each layer is then defined by only a few
parameters (we add an index l for the lth layer of the
system):

! Rl; which defines the size of the time-surface
neighborhood

! tl; the time constant of the exponential kernel
applied to events

! Nl; the number of cluster centers (prototypes) learnt
by the clustering algorithm.

To increase the information extracted by each subsequent
layer, we make these parameters evolve between subse-
quent layer. For each layer, we define the parameters KR,
Kt ,KN so that

Rlþ1 ¼ KR $ Rl (9)

tlþ1 ¼ Kt $ tl (10)

Nlþ1 ¼ KN $Nl: (11)

The obtained architecture consists in a Hierarchy Of
Time-Surfaces which is building and extracting a set of fea-
tures (the prototypes from the final layer) out of a stream of
input events. The time-surface prototypes will then be
called time-surface features in the rest of the paper.

Fig. 3 shows what these features could be for the first
layer of the achitecture where its input basis is constituted
of only two vectors: ON events and OFF events. The other
layers have input bases constituted of more vectors (as
many as the number of features extracted by their previous
layer), thus we could represent their features by a series of
surfaces each corresponding to one feature of the previous
layer. Because this representation is harder to relate to the
actual input from the camera activating the feature, we
chose to fuse these surfaces into their corresponding activ-
ity of ON and OFF events. The features of every layer of
the architecture will then be represented as a set of two
surfaces such as in Fig. 3, showing an image of the activity
of ON and OFF events associated to the feature, this what
is represented Fig. 4 in the gray boxes representing the dif-
ferent layers.

3.4 Classification
In this section we describe how the output of Layer 3 can be
used as features for object recognition. Training of the rec-
ognition algorithm consists of two main steps. In the first
step, different stimuli are presented to the model to learn
the time-surface prototypes (referred to in the next sections
as features) computed as described in the previous section.

Fig. 4. View of the proposed hierarchical model. From left to right, a moving digit (a) is presented to the ATIS camera (b) which produces ON and OFF
events (c) which are fed into Layer 1. The events are convolved with exponential kernels (d) to build event contexts from spatial receptive field of side-
length ð2R1 þ 1Þ. These contexts are clustered into N1 features (e). When a feature is matched, it produces an event (f). Events from the N1 features
constitute the output of the layer (g). Each layer k (gray boxes) takes input from its previous layer and feeds the next by reproducing steps (d)-(g).
The output of Layer k is presented between Layer k and kþ 1 ((g),(h),(i)). To compute event contexts, each layer considers a receptive field of side-
length ð2Rk þ 1Þ around each pixel. The event contexts are compared to the different features (represented as surfaces in the gray boxes as
explained in Section 3.3) and the closest one is matched. The images next to each features show the activation of their associated features in each
layer. These activations constitute the output of the layer. The output (i) of the last layer is then fed to the classifier (j) which will recognize the object.

1350 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 7, JULY 2017

Stimulus

a recognition process. When alternatives with a barely dis-
cernible difference in their sensory inputs are presented over
an extended period of time, longer time and spatial integra-
tion scales can accumulate the small differences over time
until it becomes eventually possible to discriminate the alter-
natives through its ever growing output. This accumulation
dynamics is at the heart of the Hierarchy Of Time-Surfaces
(HOTS)model, the difference between time scales can be sub-
stantial and can start from 50 ms for Layer 1 to 250 ms for
Layer 2 to finally reach 1.25 s for Layer 3.

Layer 3 receives input from Layer 2, it is the last layer
of the system and it provides the highest level informa-
tion integration, as shown in Fig. 4i time-surface proto-
types are also larger both spatially and temporally. The
output of the temporal activity of Layer 3 can finally be
used for object recognition by being fed to a classifier
(shown in Fig. 4j).

As stated above, each layer is then defined by only a few
parameters (we add an index l for the lth layer of the
system):

! Rl; which defines the size of the time-surface
neighborhood

! tl; the time constant of the exponential kernel
applied to events

! Nl; the number of cluster centers (prototypes) learnt
by the clustering algorithm.

To increase the information extracted by each subsequent
layer, we make these parameters evolve between subse-
quent layer. For each layer, we define the parameters KR,
Kt ,KN so that

Rlþ1 ¼ KR $ Rl (9)

tlþ1 ¼ Kt $ tl (10)

Nlþ1 ¼ KN $Nl: (11)

The obtained architecture consists in a Hierarchy Of
Time-Surfaces which is building and extracting a set of fea-
tures (the prototypes from the final layer) out of a stream of
input events. The time-surface prototypes will then be
called time-surface features in the rest of the paper.

Fig. 3 shows what these features could be for the first
layer of the achitecture where its input basis is constituted
of only two vectors: ON events and OFF events. The other
layers have input bases constituted of more vectors (as
many as the number of features extracted by their previous
layer), thus we could represent their features by a series of
surfaces each corresponding to one feature of the previous
layer. Because this representation is harder to relate to the
actual input from the camera activating the feature, we
chose to fuse these surfaces into their corresponding activ-
ity of ON and OFF events. The features of every layer of
the architecture will then be represented as a set of two
surfaces such as in Fig. 3, showing an image of the activity
of ON and OFF events associated to the feature, this what
is represented Fig. 4 in the gray boxes representing the dif-
ferent layers.

3.4 Classification
In this section we describe how the output of Layer 3 can be
used as features for object recognition. Training of the rec-
ognition algorithm consists of two main steps. In the first
step, different stimuli are presented to the model to learn
the time-surface prototypes (referred to in the next sections
as features) computed as described in the previous section.

Fig. 4. View of the proposed hierarchical model. From left to right, a moving digit (a) is presented to the ATIS camera (b) which produces ON and OFF
events (c) which are fed into Layer 1. The events are convolved with exponential kernels (d) to build event contexts from spatial receptive field of side-
length ð2R1 þ 1Þ. These contexts are clustered into N1 features (e). When a feature is matched, it produces an event (f). Events from the N1 features
constitute the output of the layer (g). Each layer k (gray boxes) takes input from its previous layer and feeds the next by reproducing steps (d)-(g).
The output of Layer k is presented between Layer k and kþ 1 ((g),(h),(i)). To compute event contexts, each layer considers a receptive field of side-
length ð2Rk þ 1Þ around each pixel. The event contexts are compared to the different features (represented as surfaces in the gray boxes as
explained in Section 3.3) and the closest one is matched. The images next to each features show the activation of their associated features in each
layer. These activations constitute the output of the layer. The output (i) of the last layer is then fed to the classifier (j) which will recognize the object.

1350 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 7, JULY 2017

Event
Camera

a recognition process. When alternatives with a barely dis-
cernible difference in their sensory inputs are presented over
an extended period of time, longer time and spatial integra-
tion scales can accumulate the small differences over time
until it becomes eventually possible to discriminate the alter-
natives through its ever growing output. This accumulation
dynamics is at the heart of the Hierarchy Of Time-Surfaces
(HOTS)model, the difference between time scales can be sub-
stantial and can start from 50 ms for Layer 1 to 250 ms for
Layer 2 to finally reach 1.25 s for Layer 3.

Layer 3 receives input from Layer 2, it is the last layer
of the system and it provides the highest level informa-
tion integration, as shown in Fig. 4i time-surface proto-
types are also larger both spatially and temporally. The
output of the temporal activity of Layer 3 can finally be
used for object recognition by being fed to a classifier
(shown in Fig. 4j).

As stated above, each layer is then defined by only a few
parameters (we add an index l for the lth layer of the
system):

! Rl; which defines the size of the time-surface
neighborhood

! tl; the time constant of the exponential kernel
applied to events

! Nl; the number of cluster centers (prototypes) learnt
by the clustering algorithm.

To increase the information extracted by each subsequent
layer, we make these parameters evolve between subse-
quent layer. For each layer, we define the parameters KR,
Kt ,KN so that

Rlþ1 ¼ KR $ Rl (9)

tlþ1 ¼ Kt $ tl (10)

Nlþ1 ¼ KN $Nl: (11)

The obtained architecture consists in a Hierarchy Of
Time-Surfaces which is building and extracting a set of fea-
tures (the prototypes from the final layer) out of a stream of
input events. The time-surface prototypes will then be
called time-surface features in the rest of the paper.

Fig. 3 shows what these features could be for the first
layer of the achitecture where its input basis is constituted
of only two vectors: ON events and OFF events. The other
layers have input bases constituted of more vectors (as
many as the number of features extracted by their previous
layer), thus we could represent their features by a series of
surfaces each corresponding to one feature of the previous
layer. Because this representation is harder to relate to the
actual input from the camera activating the feature, we
chose to fuse these surfaces into their corresponding activ-
ity of ON and OFF events. The features of every layer of
the architecture will then be represented as a set of two
surfaces such as in Fig. 3, showing an image of the activity
of ON and OFF events associated to the feature, this what
is represented Fig. 4 in the gray boxes representing the dif-
ferent layers.

3.4 Classification
In this section we describe how the output of Layer 3 can be
used as features for object recognition. Training of the rec-
ognition algorithm consists of two main steps. In the first
step, different stimuli are presented to the model to learn
the time-surface prototypes (referred to in the next sections
as features) computed as described in the previous section.

Fig. 4. View of the proposed hierarchical model. From left to right, a moving digit (a) is presented to the ATIS camera (b) which produces ON and OFF
events (c) which are fed into Layer 1. The events are convolved with exponential kernels (d) to build event contexts from spatial receptive field of side-
length ð2R1 þ 1Þ. These contexts are clustered into N1 features (e). When a feature is matched, it produces an event (f). Events from the N1 features
constitute the output of the layer (g). Each layer k (gray boxes) takes input from its previous layer and feeds the next by reproducing steps (d)-(g).
The output of Layer k is presented between Layer k and kþ 1 ((g),(h),(i)). To compute event contexts, each layer considers a receptive field of side-
length ð2Rk þ 1Þ around each pixel. The event contexts are compared to the different features (represented as surfaces in the gray boxes as
explained in Section 3.3) and the closest one is matched. The images next to each features show the activation of their associated features in each
layer. These activations constitute the output of the layer. The output (i) of the last layer is then fed to the classifier (j) which will recognize the object.

1350 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 7, JULY 2017

a recognition process. When alternatives with a barely dis-
cernible difference in their sensory inputs are presented over
an extended period of time, longer time and spatial integra-
tion scales can accumulate the small differences over time
until it becomes eventually possible to discriminate the alter-
natives through its ever growing output. This accumulation
dynamics is at the heart of the Hierarchy Of Time-Surfaces
(HOTS)model, the difference between time scales can be sub-
stantial and can start from 50 ms for Layer 1 to 250 ms for
Layer 2 to finally reach 1.25 s for Layer 3.

Layer 3 receives input from Layer 2, it is the last layer
of the system and it provides the highest level informa-
tion integration, as shown in Fig. 4i time-surface proto-
types are also larger both spatially and temporally. The
output of the temporal activity of Layer 3 can finally be
used for object recognition by being fed to a classifier
(shown in Fig. 4j).

As stated above, each layer is then defined by only a few
parameters (we add an index l for the lth layer of the
system):

! Rl; which defines the size of the time-surface
neighborhood

! tl; the time constant of the exponential kernel
applied to events

! Nl; the number of cluster centers (prototypes) learnt
by the clustering algorithm.

To increase the information extracted by each subsequent
layer, we make these parameters evolve between subse-
quent layer. For each layer, we define the parameters KR,
Kt ,KN so that

Rlþ1 ¼ KR $ Rl (9)

tlþ1 ¼ Kt $ tl (10)

Nlþ1 ¼ KN $Nl: (11)

The obtained architecture consists in a Hierarchy Of
Time-Surfaces which is building and extracting a set of fea-
tures (the prototypes from the final layer) out of a stream of
input events. The time-surface prototypes will then be
called time-surface features in the rest of the paper.

Fig. 3 shows what these features could be for the first
layer of the achitecture where its input basis is constituted
of only two vectors: ON events and OFF events. The other
layers have input bases constituted of more vectors (as
many as the number of features extracted by their previous
layer), thus we could represent their features by a series of
surfaces each corresponding to one feature of the previous
layer. Because this representation is harder to relate to the
actual input from the camera activating the feature, we
chose to fuse these surfaces into their corresponding activ-
ity of ON and OFF events. The features of every layer of
the architecture will then be represented as a set of two
surfaces such as in Fig. 3, showing an image of the activity
of ON and OFF events associated to the feature, this what
is represented Fig. 4 in the gray boxes representing the dif-
ferent layers.

3.4 Classification
In this section we describe how the output of Layer 3 can be
used as features for object recognition. Training of the rec-
ognition algorithm consists of two main steps. In the first
step, different stimuli are presented to the model to learn
the time-surface prototypes (referred to in the next sections
as features) computed as described in the previous section.

Fig. 4. View of the proposed hierarchical model. From left to right, a moving digit (a) is presented to the ATIS camera (b) which produces ON and OFF
events (c) which are fed into Layer 1. The events are convolved with exponential kernels (d) to build event contexts from spatial receptive field of side-
length ð2R1 þ 1Þ. These contexts are clustered into N1 features (e). When a feature is matched, it produces an event (f). Events from the N1 features
constitute the output of the layer (g). Each layer k (gray boxes) takes input from its previous layer and feeds the next by reproducing steps (d)-(g).
The output of Layer k is presented between Layer k and kþ 1 ((g),(h),(i)). To compute event contexts, each layer considers a receptive field of side-
length ð2Rk þ 1Þ around each pixel. The event contexts are compared to the different features (represented as surfaces in the gray boxes as
explained in Section 3.3) and the closest one is matched. The images next to each features show the activation of their associated features in each
layer. These activations constitute the output of the layer. The output (i) of the last layer is then fed to the classifier (j) which will recognize the object.

1350 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 7, JULY 2017

43

a recognition process. When alternatives with a barely dis-
cernible difference in their sensory inputs are presented over
an extended period of time, longer time and spatial integra-
tion scales can accumulate the small differences over time
until it becomes eventually possible to discriminate the alter-
natives through its ever growing output. This accumulation
dynamics is at the heart of the Hierarchy Of Time-Surfaces
(HOTS)model, the difference between time scales can be sub-
stantial and can start from 50 ms for Layer 1 to 250 ms for
Layer 2 to finally reach 1.25 s for Layer 3.

Layer 3 receives input from Layer 2, it is the last layer
of the system and it provides the highest level informa-
tion integration, as shown in Fig. 4i time-surface proto-
types are also larger both spatially and temporally. The
output of the temporal activity of Layer 3 can finally be
used for object recognition by being fed to a classifier
(shown in Fig. 4j).

As stated above, each layer is then defined by only a few
parameters (we add an index l for the lth layer of the
system):

! Rl; which defines the size of the time-surface
neighborhood

! tl; the time constant of the exponential kernel
applied to events

! Nl; the number of cluster centers (prototypes) learnt
by the clustering algorithm.

To increase the information extracted by each subsequent
layer, we make these parameters evolve between subse-
quent layer. For each layer, we define the parameters KR,
Kt ,KN so that

Rlþ1 ¼ KR $ Rl (9)

tlþ1 ¼ Kt $ tl (10)

Nlþ1 ¼ KN $Nl: (11)

The obtained architecture consists in a Hierarchy Of
Time-Surfaces which is building and extracting a set of fea-
tures (the prototypes from the final layer) out of a stream of
input events. The time-surface prototypes will then be
called time-surface features in the rest of the paper.

Fig. 3 shows what these features could be for the first
layer of the achitecture where its input basis is constituted
of only two vectors: ON events and OFF events. The other
layers have input bases constituted of more vectors (as
many as the number of features extracted by their previous
layer), thus we could represent their features by a series of
surfaces each corresponding to one feature of the previous
layer. Because this representation is harder to relate to the
actual input from the camera activating the feature, we
chose to fuse these surfaces into their corresponding activ-
ity of ON and OFF events. The features of every layer of
the architecture will then be represented as a set of two
surfaces such as in Fig. 3, showing an image of the activity
of ON and OFF events associated to the feature, this what
is represented Fig. 4 in the gray boxes representing the dif-
ferent layers.

3.4 Classification
In this section we describe how the output of Layer 3 can be
used as features for object recognition. Training of the rec-
ognition algorithm consists of two main steps. In the first
step, different stimuli are presented to the model to learn
the time-surface prototypes (referred to in the next sections
as features) computed as described in the previous section.

Fig. 4. View of the proposed hierarchical model. From left to right, a moving digit (a) is presented to the ATIS camera (b) which produces ON and OFF
events (c) which are fed into Layer 1. The events are convolved with exponential kernels (d) to build event contexts from spatial receptive field of side-
length ð2R1 þ 1Þ. These contexts are clustered into N1 features (e). When a feature is matched, it produces an event (f). Events from the N1 features
constitute the output of the layer (g). Each layer k (gray boxes) takes input from its previous layer and feeds the next by reproducing steps (d)-(g).
The output of Layer k is presented between Layer k and kþ 1 ((g),(h),(i)). To compute event contexts, each layer considers a receptive field of side-
length ð2Rk þ 1Þ around each pixel. The event contexts are compared to the different features (represented as surfaces in the gray boxes as
explained in Section 3.3) and the closest one is matched. The images next to each features show the activation of their associated features in each
layer. These activations constitute the output of the layer. The output (i) of the last layer is then fed to the classifier (j) which will recognize the object.

1350 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 7, JULY 2017

<latexit sha1_base64="IEy8eBhrIcA0pDsqgwmjW0T+92U=">AAACy3icjVHLSsNAFD3GV62vqks3wSK4KklRdFl040aoYB/QljJJpzU0TUJmItTq0h9wq/8l/oH+hXfGKahFdEKSM+eec2fuvV4SBkI6zuucNb+wuLScW8mvrq1vbBa2tusizlKf1/w4jNOmxwQPg4jXZCBD3kxSzkZeyBve8EzFGzc8FUEcXclxwjsjNoiCfuAzSVSzLVlmd8v5bqHolBy97FngGlCEWdW48II2eojhI8MIHBEk4RAMgp4WXDhIiOtgQlxKKNBxjnvkyZuRipOCETuk74B2LcNGtFc5hXb7dEpIb0pOG/vkiUmXElan2Tqe6cyK/S33ROdUdxvT3zO5RsRKXBP7l2+q/K9P1SLRx4muIaCaEs2o6nyTJdNdUTe3v1QlKUNCnMI9iqeEfe2c9tnWHqFrV71lOv6mlYpVe99oM7yrW9KA3Z/jnAX1csk9KjmXh8XKqRl1DrvYwwHN8xgVnKOKmp7jI57wbF1Ywrq17j6l1pzx7ODbsh4+AAjXkbA=</latexit>⌧2

a recognition process. When alternatives with a barely dis-
cernible difference in their sensory inputs are presented over
an extended period of time, longer time and spatial integra-
tion scales can accumulate the small differences over time
until it becomes eventually possible to discriminate the alter-
natives through its ever growing output. This accumulation
dynamics is at the heart of the Hierarchy Of Time-Surfaces
(HOTS)model, the difference between time scales can be sub-
stantial and can start from 50 ms for Layer 1 to 250 ms for
Layer 2 to finally reach 1.25 s for Layer 3.

Layer 3 receives input from Layer 2, it is the last layer
of the system and it provides the highest level informa-
tion integration, as shown in Fig. 4i time-surface proto-
types are also larger both spatially and temporally. The
output of the temporal activity of Layer 3 can finally be
used for object recognition by being fed to a classifier
(shown in Fig. 4j).

As stated above, each layer is then defined by only a few
parameters (we add an index l for the lth layer of the
system):

! Rl; which defines the size of the time-surface
neighborhood

! tl; the time constant of the exponential kernel
applied to events

! Nl; the number of cluster centers (prototypes) learnt
by the clustering algorithm.

To increase the information extracted by each subsequent
layer, we make these parameters evolve between subse-
quent layer. For each layer, we define the parameters KR,
Kt ,KN so that

Rlþ1 ¼ KR $ Rl (9)

tlþ1 ¼ Kt $ tl (10)

Nlþ1 ¼ KN $Nl: (11)

The obtained architecture consists in a Hierarchy Of
Time-Surfaces which is building and extracting a set of fea-
tures (the prototypes from the final layer) out of a stream of
input events. The time-surface prototypes will then be
called time-surface features in the rest of the paper.

Fig. 3 shows what these features could be for the first
layer of the achitecture where its input basis is constituted
of only two vectors: ON events and OFF events. The other
layers have input bases constituted of more vectors (as
many as the number of features extracted by their previous
layer), thus we could represent their features by a series of
surfaces each corresponding to one feature of the previous
layer. Because this representation is harder to relate to the
actual input from the camera activating the feature, we
chose to fuse these surfaces into their corresponding activ-
ity of ON and OFF events. The features of every layer of
the architecture will then be represented as a set of two
surfaces such as in Fig. 3, showing an image of the activity
of ON and OFF events associated to the feature, this what
is represented Fig. 4 in the gray boxes representing the dif-
ferent layers.

3.4 Classification
In this section we describe how the output of Layer 3 can be
used as features for object recognition. Training of the rec-
ognition algorithm consists of two main steps. In the first
step, different stimuli are presented to the model to learn
the time-surface prototypes (referred to in the next sections
as features) computed as described in the previous section.

Fig. 4. View of the proposed hierarchical model. From left to right, a moving digit (a) is presented to the ATIS camera (b) which produces ON and OFF
events (c) which are fed into Layer 1. The events are convolved with exponential kernels (d) to build event contexts from spatial receptive field of side-
length ð2R1 þ 1Þ. These contexts are clustered into N1 features (e). When a feature is matched, it produces an event (f). Events from the N1 features
constitute the output of the layer (g). Each layer k (gray boxes) takes input from its previous layer and feeds the next by reproducing steps (d)-(g).
The output of Layer k is presented between Layer k and kþ 1 ((g),(h),(i)). To compute event contexts, each layer considers a receptive field of side-
length ð2Rk þ 1Þ around each pixel. The event contexts are compared to the different features (represented as surfaces in the gray boxes as
explained in Section 3.3) and the closest one is matched. The images next to each features show the activation of their associated features in each
layer. These activations constitute the output of the layer. The output (i) of the last layer is then fed to the classifier (j) which will recognize the object.

1350 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 7, JULY 2017

a recognition process. When alternatives with a barely dis-
cernible difference in their sensory inputs are presented over
an extended period of time, longer time and spatial integra-
tion scales can accumulate the small differences over time
until it becomes eventually possible to discriminate the alter-
natives through its ever growing output. This accumulation
dynamics is at the heart of the Hierarchy Of Time-Surfaces
(HOTS)model, the difference between time scales can be sub-
stantial and can start from 50 ms for Layer 1 to 250 ms for
Layer 2 to finally reach 1.25 s for Layer 3.

Layer 3 receives input from Layer 2, it is the last layer
of the system and it provides the highest level informa-
tion integration, as shown in Fig. 4i time-surface proto-
types are also larger both spatially and temporally. The
output of the temporal activity of Layer 3 can finally be
used for object recognition by being fed to a classifier
(shown in Fig. 4j).

As stated above, each layer is then defined by only a few
parameters (we add an index l for the lth layer of the
system):

! Rl; which defines the size of the time-surface
neighborhood

! tl; the time constant of the exponential kernel
applied to events

! Nl; the number of cluster centers (prototypes) learnt
by the clustering algorithm.

To increase the information extracted by each subsequent
layer, we make these parameters evolve between subse-
quent layer. For each layer, we define the parameters KR,
Kt ,KN so that

Rlþ1 ¼ KR $ Rl (9)

tlþ1 ¼ Kt $ tl (10)

Nlþ1 ¼ KN $Nl: (11)

The obtained architecture consists in a Hierarchy Of
Time-Surfaces which is building and extracting a set of fea-
tures (the prototypes from the final layer) out of a stream of
input events. The time-surface prototypes will then be
called time-surface features in the rest of the paper.

Fig. 3 shows what these features could be for the first
layer of the achitecture where its input basis is constituted
of only two vectors: ON events and OFF events. The other
layers have input bases constituted of more vectors (as
many as the number of features extracted by their previous
layer), thus we could represent their features by a series of
surfaces each corresponding to one feature of the previous
layer. Because this representation is harder to relate to the
actual input from the camera activating the feature, we
chose to fuse these surfaces into their corresponding activ-
ity of ON and OFF events. The features of every layer of
the architecture will then be represented as a set of two
surfaces such as in Fig. 3, showing an image of the activity
of ON and OFF events associated to the feature, this what
is represented Fig. 4 in the gray boxes representing the dif-
ferent layers.

3.4 Classification
In this section we describe how the output of Layer 3 can be
used as features for object recognition. Training of the rec-
ognition algorithm consists of two main steps. In the first
step, different stimuli are presented to the model to learn
the time-surface prototypes (referred to in the next sections
as features) computed as described in the previous section.

Fig. 4. View of the proposed hierarchical model. From left to right, a moving digit (a) is presented to the ATIS camera (b) which produces ON and OFF
events (c) which are fed into Layer 1. The events are convolved with exponential kernels (d) to build event contexts from spatial receptive field of side-
length ð2R1 þ 1Þ. These contexts are clustered into N1 features (e). When a feature is matched, it produces an event (f). Events from the N1 features
constitute the output of the layer (g). Each layer k (gray boxes) takes input from its previous layer and feeds the next by reproducing steps (d)-(g).
The output of Layer k is presented between Layer k and kþ 1 ((g),(h),(i)). To compute event contexts, each layer considers a receptive field of side-
length ð2Rk þ 1Þ around each pixel. The event contexts are compared to the different features (represented as surfaces in the gray boxes as
explained in Section 3.3) and the closest one is matched. The images next to each features show the activation of their associated features in each
layer. These activations constitute the output of the layer. The output (i) of the last layer is then fed to the classifier (j) which will recognize the object.

1350 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 7, JULY 2017

Clustering

a recognition process. When alternatives with a barely dis-
cernible difference in their sensory inputs are presented over
an extended period of time, longer time and spatial integra-
tion scales can accumulate the small differences over time
until it becomes eventually possible to discriminate the alter-
natives through its ever growing output. This accumulation
dynamics is at the heart of the Hierarchy Of Time-Surfaces
(HOTS)model, the difference between time scales can be sub-
stantial and can start from 50 ms for Layer 1 to 250 ms for
Layer 2 to finally reach 1.25 s for Layer 3.

Layer 3 receives input from Layer 2, it is the last layer
of the system and it provides the highest level informa-
tion integration, as shown in Fig. 4i time-surface proto-
types are also larger both spatially and temporally. The
output of the temporal activity of Layer 3 can finally be
used for object recognition by being fed to a classifier
(shown in Fig. 4j).

As stated above, each layer is then defined by only a few
parameters (we add an index l for the lth layer of the
system):

! Rl; which defines the size of the time-surface
neighborhood

! tl; the time constant of the exponential kernel
applied to events

! Nl; the number of cluster centers (prototypes) learnt
by the clustering algorithm.

To increase the information extracted by each subsequent
layer, we make these parameters evolve between subse-
quent layer. For each layer, we define the parameters KR,
Kt ,KN so that

Rlþ1 ¼ KR $ Rl (9)

tlþ1 ¼ Kt $ tl (10)

Nlþ1 ¼ KN $Nl: (11)

The obtained architecture consists in a Hierarchy Of
Time-Surfaces which is building and extracting a set of fea-
tures (the prototypes from the final layer) out of a stream of
input events. The time-surface prototypes will then be
called time-surface features in the rest of the paper.

Fig. 3 shows what these features could be for the first
layer of the achitecture where its input basis is constituted
of only two vectors: ON events and OFF events. The other
layers have input bases constituted of more vectors (as
many as the number of features extracted by their previous
layer), thus we could represent their features by a series of
surfaces each corresponding to one feature of the previous
layer. Because this representation is harder to relate to the
actual input from the camera activating the feature, we
chose to fuse these surfaces into their corresponding activ-
ity of ON and OFF events. The features of every layer of
the architecture will then be represented as a set of two
surfaces such as in Fig. 3, showing an image of the activity
of ON and OFF events associated to the feature, this what
is represented Fig. 4 in the gray boxes representing the dif-
ferent layers.

3.4 Classification
In this section we describe how the output of Layer 3 can be
used as features for object recognition. Training of the rec-
ognition algorithm consists of two main steps. In the first
step, different stimuli are presented to the model to learn
the time-surface prototypes (referred to in the next sections
as features) computed as described in the previous section.

Fig. 4. View of the proposed hierarchical model. From left to right, a moving digit (a) is presented to the ATIS camera (b) which produces ON and OFF
events (c) which are fed into Layer 1. The events are convolved with exponential kernels (d) to build event contexts from spatial receptive field of side-
length ð2R1 þ 1Þ. These contexts are clustered into N1 features (e). When a feature is matched, it produces an event (f). Events from the N1 features
constitute the output of the layer (g). Each layer k (gray boxes) takes input from its previous layer and feeds the next by reproducing steps (d)-(g).
The output of Layer k is presented between Layer k and kþ 1 ((g),(h),(i)). To compute event contexts, each layer considers a receptive field of side-
length ð2Rk þ 1Þ around each pixel. The event contexts are compared to the different features (represented as surfaces in the gray boxes as
explained in Section 3.3) and the closest one is matched. The images next to each features show the activation of their associated features in each
layer. These activations constitute the output of the layer. The output (i) of the last layer is then fed to the classifier (j) which will recognize the object.

1350 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 7, JULY 2017

a recognition process. When alternatives with a barely dis-
cernible difference in their sensory inputs are presented over
an extended period of time, longer time and spatial integra-
tion scales can accumulate the small differences over time
until it becomes eventually possible to discriminate the alter-
natives through its ever growing output. This accumulation
dynamics is at the heart of the Hierarchy Of Time-Surfaces
(HOTS)model, the difference between time scales can be sub-
stantial and can start from 50 ms for Layer 1 to 250 ms for
Layer 2 to finally reach 1.25 s for Layer 3.

Layer 3 receives input from Layer 2, it is the last layer
of the system and it provides the highest level informa-
tion integration, as shown in Fig. 4i time-surface proto-
types are also larger both spatially and temporally. The
output of the temporal activity of Layer 3 can finally be
used for object recognition by being fed to a classifier
(shown in Fig. 4j).

As stated above, each layer is then defined by only a few
parameters (we add an index l for the lth layer of the
system):

! Rl; which defines the size of the time-surface
neighborhood

! tl; the time constant of the exponential kernel
applied to events

! Nl; the number of cluster centers (prototypes) learnt
by the clustering algorithm.

To increase the information extracted by each subsequent
layer, we make these parameters evolve between subse-
quent layer. For each layer, we define the parameters KR,
Kt ,KN so that

Rlþ1 ¼ KR $ Rl (9)

tlþ1 ¼ Kt $ tl (10)

Nlþ1 ¼ KN $Nl: (11)

The obtained architecture consists in a Hierarchy Of
Time-Surfaces which is building and extracting a set of fea-
tures (the prototypes from the final layer) out of a stream of
input events. The time-surface prototypes will then be
called time-surface features in the rest of the paper.

Fig. 3 shows what these features could be for the first
layer of the achitecture where its input basis is constituted
of only two vectors: ON events and OFF events. The other
layers have input bases constituted of more vectors (as
many as the number of features extracted by their previous
layer), thus we could represent their features by a series of
surfaces each corresponding to one feature of the previous
layer. Because this representation is harder to relate to the
actual input from the camera activating the feature, we
chose to fuse these surfaces into their corresponding activ-
ity of ON and OFF events. The features of every layer of
the architecture will then be represented as a set of two
surfaces such as in Fig. 3, showing an image of the activity
of ON and OFF events associated to the feature, this what
is represented Fig. 4 in the gray boxes representing the dif-
ferent layers.

3.4 Classification
In this section we describe how the output of Layer 3 can be
used as features for object recognition. Training of the rec-
ognition algorithm consists of two main steps. In the first
step, different stimuli are presented to the model to learn
the time-surface prototypes (referred to in the next sections
as features) computed as described in the previous section.

Fig. 4. View of the proposed hierarchical model. From left to right, a moving digit (a) is presented to the ATIS camera (b) which produces ON and OFF
events (c) which are fed into Layer 1. The events are convolved with exponential kernels (d) to build event contexts from spatial receptive field of side-
length ð2R1 þ 1Þ. These contexts are clustered into N1 features (e). When a feature is matched, it produces an event (f). Events from the N1 features
constitute the output of the layer (g). Each layer k (gray boxes) takes input from its previous layer and feeds the next by reproducing steps (d)-(g).
The output of Layer k is presented between Layer k and kþ 1 ((g),(h),(i)). To compute event contexts, each layer considers a receptive field of side-
length ð2Rk þ 1Þ around each pixel. The event contexts are compared to the different features (represented as surfaces in the gray boxes as
explained in Section 3.3) and the closest one is matched. The images next to each features show the activation of their associated features in each
layer. These activations constitute the output of the layer. The output (i) of the last layer is then fed to the classifier (j) which will recognize the object.

1350 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 7, JULY 2017

a recognition process. When alternatives with a barely dis-
cernible difference in their sensory inputs are presented over
an extended period of time, longer time and spatial integra-
tion scales can accumulate the small differences over time
until it becomes eventually possible to discriminate the alter-
natives through its ever growing output. This accumulation
dynamics is at the heart of the Hierarchy Of Time-Surfaces
(HOTS)model, the difference between time scales can be sub-
stantial and can start from 50 ms for Layer 1 to 250 ms for
Layer 2 to finally reach 1.25 s for Layer 3.

Layer 3 receives input from Layer 2, it is the last layer
of the system and it provides the highest level informa-
tion integration, as shown in Fig. 4i time-surface proto-
types are also larger both spatially and temporally. The
output of the temporal activity of Layer 3 can finally be
used for object recognition by being fed to a classifier
(shown in Fig. 4j).

As stated above, each layer is then defined by only a few
parameters (we add an index l for the lth layer of the
system):

! Rl; which defines the size of the time-surface
neighborhood

! tl; the time constant of the exponential kernel
applied to events

! Nl; the number of cluster centers (prototypes) learnt
by the clustering algorithm.

To increase the information extracted by each subsequent
layer, we make these parameters evolve between subse-
quent layer. For each layer, we define the parameters KR,
Kt ,KN so that

Rlþ1 ¼ KR $ Rl (9)

tlþ1 ¼ Kt $ tl (10)

Nlþ1 ¼ KN $Nl: (11)

The obtained architecture consists in a Hierarchy Of
Time-Surfaces which is building and extracting a set of fea-
tures (the prototypes from the final layer) out of a stream of
input events. The time-surface prototypes will then be
called time-surface features in the rest of the paper.

Fig. 3 shows what these features could be for the first
layer of the achitecture where its input basis is constituted
of only two vectors: ON events and OFF events. The other
layers have input bases constituted of more vectors (as
many as the number of features extracted by their previous
layer), thus we could represent their features by a series of
surfaces each corresponding to one feature of the previous
layer. Because this representation is harder to relate to the
actual input from the camera activating the feature, we
chose to fuse these surfaces into their corresponding activ-
ity of ON and OFF events. The features of every layer of
the architecture will then be represented as a set of two
surfaces such as in Fig. 3, showing an image of the activity
of ON and OFF events associated to the feature, this what
is represented Fig. 4 in the gray boxes representing the dif-
ferent layers.

3.4 Classification
In this section we describe how the output of Layer 3 can be
used as features for object recognition. Training of the rec-
ognition algorithm consists of two main steps. In the first
step, different stimuli are presented to the model to learn
the time-surface prototypes (referred to in the next sections
as features) computed as described in the previous section.

Fig. 4. View of the proposed hierarchical model. From left to right, a moving digit (a) is presented to the ATIS camera (b) which produces ON and OFF
events (c) which are fed into Layer 1. The events are convolved with exponential kernels (d) to build event contexts from spatial receptive field of side-
length ð2R1 þ 1Þ. These contexts are clustered into N1 features (e). When a feature is matched, it produces an event (f). Events from the N1 features
constitute the output of the layer (g). Each layer k (gray boxes) takes input from its previous layer and feeds the next by reproducing steps (d)-(g).
The output of Layer k is presented between Layer k and kþ 1 ((g),(h),(i)). To compute event contexts, each layer considers a receptive field of side-
length ð2Rk þ 1Þ around each pixel. The event contexts are compared to the different features (represented as surfaces in the gray boxes as
explained in Section 3.3) and the closest one is matched. The images next to each features show the activation of their associated features in each
layer. These activations constitute the output of the layer. The output (i) of the last layer is then fed to the classifier (j) which will recognize the object.

1350 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 7, JULY 2017

a recognition process. When alternatives with a barely dis-
cernible difference in their sensory inputs are presented over
an extended period of time, longer time and spatial integra-
tion scales can accumulate the small differences over time
until it becomes eventually possible to discriminate the alter-
natives through its ever growing output. This accumulation
dynamics is at the heart of the Hierarchy Of Time-Surfaces
(HOTS)model, the difference between time scales can be sub-
stantial and can start from 50 ms for Layer 1 to 250 ms for
Layer 2 to finally reach 1.25 s for Layer 3.

Layer 3 receives input from Layer 2, it is the last layer
of the system and it provides the highest level informa-
tion integration, as shown in Fig. 4i time-surface proto-
types are also larger both spatially and temporally. The
output of the temporal activity of Layer 3 can finally be
used for object recognition by being fed to a classifier
(shown in Fig. 4j).

As stated above, each layer is then defined by only a few
parameters (we add an index l for the lth layer of the
system):

! Rl; which defines the size of the time-surface
neighborhood

! tl; the time constant of the exponential kernel
applied to events

! Nl; the number of cluster centers (prototypes) learnt
by the clustering algorithm.

To increase the information extracted by each subsequent
layer, we make these parameters evolve between subse-
quent layer. For each layer, we define the parameters KR,
Kt ,KN so that

Rlþ1 ¼ KR $ Rl (9)

tlþ1 ¼ Kt $ tl (10)

Nlþ1 ¼ KN $Nl: (11)

The obtained architecture consists in a Hierarchy Of
Time-Surfaces which is building and extracting a set of fea-
tures (the prototypes from the final layer) out of a stream of
input events. The time-surface prototypes will then be
called time-surface features in the rest of the paper.

Fig. 3 shows what these features could be for the first
layer of the achitecture where its input basis is constituted
of only two vectors: ON events and OFF events. The other
layers have input bases constituted of more vectors (as
many as the number of features extracted by their previous
layer), thus we could represent their features by a series of
surfaces each corresponding to one feature of the previous
layer. Because this representation is harder to relate to the
actual input from the camera activating the feature, we
chose to fuse these surfaces into their corresponding activ-
ity of ON and OFF events. The features of every layer of
the architecture will then be represented as a set of two
surfaces such as in Fig. 3, showing an image of the activity
of ON and OFF events associated to the feature, this what
is represented Fig. 4 in the gray boxes representing the dif-
ferent layers.

3.4 Classification
In this section we describe how the output of Layer 3 can be
used as features for object recognition. Training of the rec-
ognition algorithm consists of two main steps. In the first
step, different stimuli are presented to the model to learn
the time-surface prototypes (referred to in the next sections
as features) computed as described in the previous section.

Fig. 4. View of the proposed hierarchical model. From left to right, a moving digit (a) is presented to the ATIS camera (b) which produces ON and OFF
events (c) which are fed into Layer 1. The events are convolved with exponential kernels (d) to build event contexts from spatial receptive field of side-
length ð2R1 þ 1Þ. These contexts are clustered into N1 features (e). When a feature is matched, it produces an event (f). Events from the N1 features
constitute the output of the layer (g). Each layer k (gray boxes) takes input from its previous layer and feeds the next by reproducing steps (d)-(g).
The output of Layer k is presented between Layer k and kþ 1 ((g),(h),(i)). To compute event contexts, each layer considers a receptive field of side-
length ð2Rk þ 1Þ around each pixel. The event contexts are compared to the different features (represented as surfaces in the gray boxes as
explained in Section 3.3) and the closest one is matched. The images next to each features show the activation of their associated features in each
layer. These activations constitute the output of the layer. The output (i) of the last layer is then fed to the classifier (j) which will recognize the object.

1350 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 7, JULY 2017

44

a recognition process. When alternatives with a barely dis-
cernible difference in their sensory inputs are presented over
an extended period of time, longer time and spatial integra-
tion scales can accumulate the small differences over time
until it becomes eventually possible to discriminate the alter-
natives through its ever growing output. This accumulation
dynamics is at the heart of the Hierarchy Of Time-Surfaces
(HOTS)model, the difference between time scales can be sub-
stantial and can start from 50 ms for Layer 1 to 250 ms for
Layer 2 to finally reach 1.25 s for Layer 3.

Layer 3 receives input from Layer 2, it is the last layer
of the system and it provides the highest level informa-
tion integration, as shown in Fig. 4i time-surface proto-
types are also larger both spatially and temporally. The
output of the temporal activity of Layer 3 can finally be
used for object recognition by being fed to a classifier
(shown in Fig. 4j).

As stated above, each layer is then defined by only a few
parameters (we add an index l for the lth layer of the
system):

! Rl; which defines the size of the time-surface
neighborhood

! tl; the time constant of the exponential kernel
applied to events

! Nl; the number of cluster centers (prototypes) learnt
by the clustering algorithm.

To increase the information extracted by each subsequent
layer, we make these parameters evolve between subse-
quent layer. For each layer, we define the parameters KR,
Kt ,KN so that

Rlþ1 ¼ KR $ Rl (9)

tlþ1 ¼ Kt $ tl (10)

Nlþ1 ¼ KN $Nl: (11)

The obtained architecture consists in a Hierarchy Of
Time-Surfaces which is building and extracting a set of fea-
tures (the prototypes from the final layer) out of a stream of
input events. The time-surface prototypes will then be
called time-surface features in the rest of the paper.

Fig. 3 shows what these features could be for the first
layer of the achitecture where its input basis is constituted
of only two vectors: ON events and OFF events. The other
layers have input bases constituted of more vectors (as
many as the number of features extracted by their previous
layer), thus we could represent their features by a series of
surfaces each corresponding to one feature of the previous
layer. Because this representation is harder to relate to the
actual input from the camera activating the feature, we
chose to fuse these surfaces into their corresponding activ-
ity of ON and OFF events. The features of every layer of
the architecture will then be represented as a set of two
surfaces such as in Fig. 3, showing an image of the activity
of ON and OFF events associated to the feature, this what
is represented Fig. 4 in the gray boxes representing the dif-
ferent layers.

3.4 Classification
In this section we describe how the output of Layer 3 can be
used as features for object recognition. Training of the rec-
ognition algorithm consists of two main steps. In the first
step, different stimuli are presented to the model to learn
the time-surface prototypes (referred to in the next sections
as features) computed as described in the previous section.

Fig. 4. View of the proposed hierarchical model. From left to right, a moving digit (a) is presented to the ATIS camera (b) which produces ON and OFF
events (c) which are fed into Layer 1. The events are convolved with exponential kernels (d) to build event contexts from spatial receptive field of side-
length ð2R1 þ 1Þ. These contexts are clustered into N1 features (e). When a feature is matched, it produces an event (f). Events from the N1 features
constitute the output of the layer (g). Each layer k (gray boxes) takes input from its previous layer and feeds the next by reproducing steps (d)-(g).
The output of Layer k is presented between Layer k and kþ 1 ((g),(h),(i)). To compute event contexts, each layer considers a receptive field of side-
length ð2Rk þ 1Þ around each pixel. The event contexts are compared to the different features (represented as surfaces in the gray boxes as
explained in Section 3.3) and the closest one is matched. The images next to each features show the activation of their associated features in each
layer. These activations constitute the output of the layer. The output (i) of the last layer is then fed to the classifier (j) which will recognize the object.

1350 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 7, JULY 2017

Clustering

a recognition process. When alternatives with a barely dis-
cernible difference in their sensory inputs are presented over
an extended period of time, longer time and spatial integra-
tion scales can accumulate the small differences over time
until it becomes eventually possible to discriminate the alter-
natives through its ever growing output. This accumulation
dynamics is at the heart of the Hierarchy Of Time-Surfaces
(HOTS)model, the difference between time scales can be sub-
stantial and can start from 50 ms for Layer 1 to 250 ms for
Layer 2 to finally reach 1.25 s for Layer 3.

Layer 3 receives input from Layer 2, it is the last layer
of the system and it provides the highest level informa-
tion integration, as shown in Fig. 4i time-surface proto-
types are also larger both spatially and temporally. The
output of the temporal activity of Layer 3 can finally be
used for object recognition by being fed to a classifier
(shown in Fig. 4j).

As stated above, each layer is then defined by only a few
parameters (we add an index l for the lth layer of the
system):

! Rl; which defines the size of the time-surface
neighborhood

! tl; the time constant of the exponential kernel
applied to events

! Nl; the number of cluster centers (prototypes) learnt
by the clustering algorithm.

To increase the information extracted by each subsequent
layer, we make these parameters evolve between subse-
quent layer. For each layer, we define the parameters KR,
Kt ,KN so that

Rlþ1 ¼ KR $ Rl (9)

tlþ1 ¼ Kt $ tl (10)

Nlþ1 ¼ KN $Nl: (11)

The obtained architecture consists in a Hierarchy Of
Time-Surfaces which is building and extracting a set of fea-
tures (the prototypes from the final layer) out of a stream of
input events. The time-surface prototypes will then be
called time-surface features in the rest of the paper.

Fig. 3 shows what these features could be for the first
layer of the achitecture where its input basis is constituted
of only two vectors: ON events and OFF events. The other
layers have input bases constituted of more vectors (as
many as the number of features extracted by their previous
layer), thus we could represent their features by a series of
surfaces each corresponding to one feature of the previous
layer. Because this representation is harder to relate to the
actual input from the camera activating the feature, we
chose to fuse these surfaces into their corresponding activ-
ity of ON and OFF events. The features of every layer of
the architecture will then be represented as a set of two
surfaces such as in Fig. 3, showing an image of the activity
of ON and OFF events associated to the feature, this what
is represented Fig. 4 in the gray boxes representing the dif-
ferent layers.

3.4 Classification
In this section we describe how the output of Layer 3 can be
used as features for object recognition. Training of the rec-
ognition algorithm consists of two main steps. In the first
step, different stimuli are presented to the model to learn
the time-surface prototypes (referred to in the next sections
as features) computed as described in the previous section.

Fig. 4. View of the proposed hierarchical model. From left to right, a moving digit (a) is presented to the ATIS camera (b) which produces ON and OFF
events (c) which are fed into Layer 1. The events are convolved with exponential kernels (d) to build event contexts from spatial receptive field of side-
length ð2R1 þ 1Þ. These contexts are clustered into N1 features (e). When a feature is matched, it produces an event (f). Events from the N1 features
constitute the output of the layer (g). Each layer k (gray boxes) takes input from its previous layer and feeds the next by reproducing steps (d)-(g).
The output of Layer k is presented between Layer k and kþ 1 ((g),(h),(i)). To compute event contexts, each layer considers a receptive field of side-
length ð2Rk þ 1Þ around each pixel. The event contexts are compared to the different features (represented as surfaces in the gray boxes as
explained in Section 3.3) and the closest one is matched. The images next to each features show the activation of their associated features in each
layer. These activations constitute the output of the layer. The output (i) of the last layer is then fed to the classifier (j) which will recognize the object.

1350 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 7, JULY 2017

a recognition process. When alternatives with a barely dis-
cernible difference in their sensory inputs are presented over
an extended period of time, longer time and spatial integra-
tion scales can accumulate the small differences over time
until it becomes eventually possible to discriminate the alter-
natives through its ever growing output. This accumulation
dynamics is at the heart of the Hierarchy Of Time-Surfaces
(HOTS)model, the difference between time scales can be sub-
stantial and can start from 50 ms for Layer 1 to 250 ms for
Layer 2 to finally reach 1.25 s for Layer 3.

Layer 3 receives input from Layer 2, it is the last layer
of the system and it provides the highest level informa-
tion integration, as shown in Fig. 4i time-surface proto-
types are also larger both spatially and temporally. The
output of the temporal activity of Layer 3 can finally be
used for object recognition by being fed to a classifier
(shown in Fig. 4j).

As stated above, each layer is then defined by only a few
parameters (we add an index l for the lth layer of the
system):

! Rl; which defines the size of the time-surface
neighborhood

! tl; the time constant of the exponential kernel
applied to events

! Nl; the number of cluster centers (prototypes) learnt
by the clustering algorithm.

To increase the information extracted by each subsequent
layer, we make these parameters evolve between subse-
quent layer. For each layer, we define the parameters KR,
Kt ,KN so that

Rlþ1 ¼ KR $ Rl (9)

tlþ1 ¼ Kt $ tl (10)

Nlþ1 ¼ KN $Nl: (11)

The obtained architecture consists in a Hierarchy Of
Time-Surfaces which is building and extracting a set of fea-
tures (the prototypes from the final layer) out of a stream of
input events. The time-surface prototypes will then be
called time-surface features in the rest of the paper.

Fig. 3 shows what these features could be for the first
layer of the achitecture where its input basis is constituted
of only two vectors: ON events and OFF events. The other
layers have input bases constituted of more vectors (as
many as the number of features extracted by their previous
layer), thus we could represent their features by a series of
surfaces each corresponding to one feature of the previous
layer. Because this representation is harder to relate to the
actual input from the camera activating the feature, we
chose to fuse these surfaces into their corresponding activ-
ity of ON and OFF events. The features of every layer of
the architecture will then be represented as a set of two
surfaces such as in Fig. 3, showing an image of the activity
of ON and OFF events associated to the feature, this what
is represented Fig. 4 in the gray boxes representing the dif-
ferent layers.

3.4 Classification
In this section we describe how the output of Layer 3 can be
used as features for object recognition. Training of the rec-
ognition algorithm consists of two main steps. In the first
step, different stimuli are presented to the model to learn
the time-surface prototypes (referred to in the next sections
as features) computed as described in the previous section.

Fig. 4. View of the proposed hierarchical model. From left to right, a moving digit (a) is presented to the ATIS camera (b) which produces ON and OFF
events (c) which are fed into Layer 1. The events are convolved with exponential kernels (d) to build event contexts from spatial receptive field of side-
length ð2R1 þ 1Þ. These contexts are clustered into N1 features (e). When a feature is matched, it produces an event (f). Events from the N1 features
constitute the output of the layer (g). Each layer k (gray boxes) takes input from its previous layer and feeds the next by reproducing steps (d)-(g).
The output of Layer k is presented between Layer k and kþ 1 ((g),(h),(i)). To compute event contexts, each layer considers a receptive field of side-
length ð2Rk þ 1Þ around each pixel. The event contexts are compared to the different features (represented as surfaces in the gray boxes as
explained in Section 3.3) and the closest one is matched. The images next to each features show the activation of their associated features in each
layer. These activations constitute the output of the layer. The output (i) of the last layer is then fed to the classifier (j) which will recognize the object.

1350 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 7, JULY 2017

<latexit sha1_base64="m9P+XndBFyGd43BPzGkrnmWWB64=">AAACy3icjVHLSsNAFD3GV62vqks3wSK4KokPdFl040aoYB/QljJJpzU0TcLMRKjVpT/gVv9L/AP9C++MKahFdEKSM+eec2fuvV4SBlI5zuuMNTs3v7CYW8ovr6yurRc2NmsyToXPq34cxqLhMcnDIOJVFaiQNxLB2dALed0bnOl4/YYLGcTRlRolvD1k/SjoBT5TRDVaiqV25yDfKRSdkmOWPQ3cDBSRrUpceEELXcTwkWIIjgiKcAgGSU8TLhwkxLUxJk4QCkyc4x558qak4qRgxA7o26ddM2Mj2uuc0rh9OiWkV5DTxi55YtIJwvo028RTk1mzv+Uem5z6biP6e1muIbEK18T+5Zso/+vTtSj0cGJqCKimxDC6Oj/Lkpqu6JvbX6pSlCEhTuMuxQVh3zgnfbaNR5radW+Zib8ZpWb13s+0Kd71LWnA7s9xToPafsk9KjmXh8XyaTbqHLaxgz2a5zHKOEcFVTPHRzzh2bqwpHVr3X1KrZnMs4Vvy3r4AAs4kbE=</latexit>⌧3

45

a recognition process. When alternatives with a barely dis-
cernible difference in their sensory inputs are presented over
an extended period of time, longer time and spatial integra-
tion scales can accumulate the small differences over time
until it becomes eventually possible to discriminate the alter-
natives through its ever growing output. This accumulation
dynamics is at the heart of the Hierarchy Of Time-Surfaces
(HOTS)model, the difference between time scales can be sub-
stantial and can start from 50 ms for Layer 1 to 250 ms for
Layer 2 to finally reach 1.25 s for Layer 3.

Layer 3 receives input from Layer 2, it is the last layer
of the system and it provides the highest level informa-
tion integration, as shown in Fig. 4i time-surface proto-
types are also larger both spatially and temporally. The
output of the temporal activity of Layer 3 can finally be
used for object recognition by being fed to a classifier
(shown in Fig. 4j).

As stated above, each layer is then defined by only a few
parameters (we add an index l for the lth layer of the
system):

! Rl; which defines the size of the time-surface
neighborhood

! tl; the time constant of the exponential kernel
applied to events

! Nl; the number of cluster centers (prototypes) learnt
by the clustering algorithm.

To increase the information extracted by each subsequent
layer, we make these parameters evolve between subse-
quent layer. For each layer, we define the parameters KR,
Kt ,KN so that

Rlþ1 ¼ KR $ Rl (9)

tlþ1 ¼ Kt $ tl (10)

Nlþ1 ¼ KN $Nl: (11)

The obtained architecture consists in a Hierarchy Of
Time-Surfaces which is building and extracting a set of fea-
tures (the prototypes from the final layer) out of a stream of
input events. The time-surface prototypes will then be
called time-surface features in the rest of the paper.

Fig. 3 shows what these features could be for the first
layer of the achitecture where its input basis is constituted
of only two vectors: ON events and OFF events. The other
layers have input bases constituted of more vectors (as
many as the number of features extracted by their previous
layer), thus we could represent their features by a series of
surfaces each corresponding to one feature of the previous
layer. Because this representation is harder to relate to the
actual input from the camera activating the feature, we
chose to fuse these surfaces into their corresponding activ-
ity of ON and OFF events. The features of every layer of
the architecture will then be represented as a set of two
surfaces such as in Fig. 3, showing an image of the activity
of ON and OFF events associated to the feature, this what
is represented Fig. 4 in the gray boxes representing the dif-
ferent layers.

3.4 Classification
In this section we describe how the output of Layer 3 can be
used as features for object recognition. Training of the rec-
ognition algorithm consists of two main steps. In the first
step, different stimuli are presented to the model to learn
the time-surface prototypes (referred to in the next sections
as features) computed as described in the previous section.

Fig. 4. View of the proposed hierarchical model. From left to right, a moving digit (a) is presented to the ATIS camera (b) which produces ON and OFF
events (c) which are fed into Layer 1. The events are convolved with exponential kernels (d) to build event contexts from spatial receptive field of side-
length ð2R1 þ 1Þ. These contexts are clustered into N1 features (e). When a feature is matched, it produces an event (f). Events from the N1 features
constitute the output of the layer (g). Each layer k (gray boxes) takes input from its previous layer and feeds the next by reproducing steps (d)-(g).
The output of Layer k is presented between Layer k and kþ 1 ((g),(h),(i)). To compute event contexts, each layer considers a receptive field of side-
length ð2Rk þ 1Þ around each pixel. The event contexts are compared to the different features (represented as surfaces in the gray boxes as
explained in Section 3.3) and the closest one is matched. The images next to each features show the activation of their associated features in each
layer. These activations constitute the output of the layer. The output (i) of the last layer is then fed to the classifier (j) which will recognize the object.

1350 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 7, JULY 2017

normalized, and Bhattacharyya distances respectively. The
recognized class is the one with the smallest bar in each col-
umn, and is marked with a star. Each character is presented
once to the sensor in the order we gave to the classes so that
perfect results correspond to stars only on the main diago-
nal. In this experiment, all distances lead to a recognition
performance of 100 percent.

We ran a cross validation test by randomly choosing for
each pattern which presentation would be used for learning
(both the model and classifier), and the other is then used
for testing. Every trial amongst the hundred we ran gave a
recognition accuracy of 100 percent.

This experiment is run on a dataset composed of objects
with very distinct spatial characteristics. Because of that, it is
the best one to try to interpret the features learnt by the
architecture. Fig. 11 presents the activation of all three
layers’ features for three different characters. We can
observe on panels (a), (b) and (c) how the information avail-
able in different layers allow us to discriminate between
three similar characters: E, B and 8. Each column shows the
response of a given feature (its associated surface represen-
tation is shown at the top) when the characters are presented
(each line), with the last column showing all these data at
once. We can see the difference in activation of the features
corresponding to the differences in the input stimuli.

Panel (d) shows the accumulated feature activations for a
set of objects used in this task. We can clearly see that the
information encoded by each feature is becoming more and
more abstract as we go from one layer to the next. In the sec-
ond layer, features seem to respond to particular orientation
of edges constituted of either ON or OFF events. In the third
layer however, it seems that these features were pooled in
order to recognize the line drawing the characters with fea-
tures being tuned to its curvature. We can also see that the
feature activations are very reproductible from one charac-
ter to another containing the same inner shapes.

4.3 Face Recognition Task
The results obtained in the previous sections encouraged us to
run the proposed method on more complex data. For our last

experiment, we use a dataset consisting of the faces of seven
subjects. Each subject is moving his or her head to follow the
same visual stimulus tracing out a square path on a computer
monitor (see Fig. 12). The data is acquired by an ATIS
camera [22]. Each subject has 20 presentations in the dataset
of which one is used for training and the others for testing.

We again use the same hierarchical system described
previously with the following parameters:

! R1 ¼ 4;
! t1 ¼ 50ms;
! N1 ¼ 8:
! KR ¼ 2;
! Kt ¼ 5;
! KN ¼ 2:
Because the faces are bigger andmore complex objects, we

use bigger receptive fields to define the time-surfaces andwe
set the layers to cluster twice asmany features as in the previ-
ous experiments. These parameters lead to recognition per-
formances of 37, 78 and 79 percent when using the standard,
normalized and Bhattacharyya distances respectively as
shown in Fig. 13.

5 DISCUSSION

In this paper we have described a hierarchical architecture
for object recognition using a new type of feature relying on
time-surfaces. These time-surfaces use the high temporal res-
olution of event-driven time-based vision sensors to associ-
ate a descriptor to every event based on its relative timings
to recent activity in its spatial neighborhood. The model
then clusters this space to extract features. Successive layers
perform this operation again and again, incorporating
larger and larger spatial and temporal scales in the process.
This allows for features of these successive layers to acquire
more information, from bigger spatial receptive fields and
from longer timescales.

Every layer also automatically learns its own features
from its predecessor’s output, removing the need for super-
vision. The process of training the model is thus completely
unsupervised. Supervision only takes place when training

Fig. 9. Letters & Digits experiment: Pattern signatures for some of the input classes. For each letter and digit the trained histogram used as a signa-
ture by the classifier is shown. The snapshot shows an accumulation of events from the sensor (White dots for ON events and black dots for OFF
events). The histograms present the signatures: X-axis is the index of the feature, Y-axis is the number of activations of the feature during the stimu-
lus presentation. The signatures of all the letters & digits are presented in the supplemental material, available online.

LAGORCE ET AL.: HOTS: A HIERARCHY OF EVENT-BASED TIME-SURFACES FOR PATTERN RECOGNITION 1353

a recognition process. When alternatives with a barely dis-
cernible difference in their sensory inputs are presented over
an extended period of time, longer time and spatial integra-
tion scales can accumulate the small differences over time
until it becomes eventually possible to discriminate the alter-
natives through its ever growing output. This accumulation
dynamics is at the heart of the Hierarchy Of Time-Surfaces
(HOTS)model, the difference between time scales can be sub-
stantial and can start from 50 ms for Layer 1 to 250 ms for
Layer 2 to finally reach 1.25 s for Layer 3.

Layer 3 receives input from Layer 2, it is the last layer
of the system and it provides the highest level informa-
tion integration, as shown in Fig. 4i time-surface proto-
types are also larger both spatially and temporally. The
output of the temporal activity of Layer 3 can finally be
used for object recognition by being fed to a classifier
(shown in Fig. 4j).

As stated above, each layer is then defined by only a few
parameters (we add an index l for the lth layer of the
system):

! Rl; which defines the size of the time-surface
neighborhood

! tl; the time constant of the exponential kernel
applied to events

! Nl; the number of cluster centers (prototypes) learnt
by the clustering algorithm.

To increase the information extracted by each subsequent
layer, we make these parameters evolve between subse-
quent layer. For each layer, we define the parameters KR,
Kt ,KN so that

Rlþ1 ¼ KR $ Rl (9)

tlþ1 ¼ Kt $ tl (10)

Nlþ1 ¼ KN $Nl: (11)

The obtained architecture consists in a Hierarchy Of
Time-Surfaces which is building and extracting a set of fea-
tures (the prototypes from the final layer) out of a stream of
input events. The time-surface prototypes will then be
called time-surface features in the rest of the paper.

Fig. 3 shows what these features could be for the first
layer of the achitecture where its input basis is constituted
of only two vectors: ON events and OFF events. The other
layers have input bases constituted of more vectors (as
many as the number of features extracted by their previous
layer), thus we could represent their features by a series of
surfaces each corresponding to one feature of the previous
layer. Because this representation is harder to relate to the
actual input from the camera activating the feature, we
chose to fuse these surfaces into their corresponding activ-
ity of ON and OFF events. The features of every layer of
the architecture will then be represented as a set of two
surfaces such as in Fig. 3, showing an image of the activity
of ON and OFF events associated to the feature, this what
is represented Fig. 4 in the gray boxes representing the dif-
ferent layers.

3.4 Classification
In this section we describe how the output of Layer 3 can be
used as features for object recognition. Training of the rec-
ognition algorithm consists of two main steps. In the first
step, different stimuli are presented to the model to learn
the time-surface prototypes (referred to in the next sections
as features) computed as described in the previous section.

Fig. 4. View of the proposed hierarchical model. From left to right, a moving digit (a) is presented to the ATIS camera (b) which produces ON and OFF
events (c) which are fed into Layer 1. The events are convolved with exponential kernels (d) to build event contexts from spatial receptive field of side-
length ð2R1 þ 1Þ. These contexts are clustered into N1 features (e). When a feature is matched, it produces an event (f). Events from the N1 features
constitute the output of the layer (g). Each layer k (gray boxes) takes input from its previous layer and feeds the next by reproducing steps (d)-(g).
The output of Layer k is presented between Layer k and kþ 1 ((g),(h),(i)). To compute event contexts, each layer considers a receptive field of side-
length ð2Rk þ 1Þ around each pixel. The event contexts are compared to the different features (represented as surfaces in the gray boxes as
explained in Section 3.3) and the closest one is matched. The images next to each features show the activation of their associated features in each
layer. These activations constitute the output of the layer. The output (i) of the last layer is then fed to the classifier (j) which will recognize the object.

1350 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 7, JULY 2017

a recognition process. When alternatives with a barely dis-
cernible difference in their sensory inputs are presented over
an extended period of time, longer time and spatial integra-
tion scales can accumulate the small differences over time
until it becomes eventually possible to discriminate the alter-
natives through its ever growing output. This accumulation
dynamics is at the heart of the Hierarchy Of Time-Surfaces
(HOTS)model, the difference between time scales can be sub-
stantial and can start from 50 ms for Layer 1 to 250 ms for
Layer 2 to finally reach 1.25 s for Layer 3.

Layer 3 receives input from Layer 2, it is the last layer
of the system and it provides the highest level informa-
tion integration, as shown in Fig. 4i time-surface proto-
types are also larger both spatially and temporally. The
output of the temporal activity of Layer 3 can finally be
used for object recognition by being fed to a classifier
(shown in Fig. 4j).

As stated above, each layer is then defined by only a few
parameters (we add an index l for the lth layer of the
system):

! Rl; which defines the size of the time-surface
neighborhood

! tl; the time constant of the exponential kernel
applied to events

! Nl; the number of cluster centers (prototypes) learnt
by the clustering algorithm.

To increase the information extracted by each subsequent
layer, we make these parameters evolve between subse-
quent layer. For each layer, we define the parameters KR,
Kt ,KN so that

Rlþ1 ¼ KR $ Rl (9)

tlþ1 ¼ Kt $ tl (10)

Nlþ1 ¼ KN $Nl: (11)

The obtained architecture consists in a Hierarchy Of
Time-Surfaces which is building and extracting a set of fea-
tures (the prototypes from the final layer) out of a stream of
input events. The time-surface prototypes will then be
called time-surface features in the rest of the paper.

Fig. 3 shows what these features could be for the first
layer of the achitecture where its input basis is constituted
of only two vectors: ON events and OFF events. The other
layers have input bases constituted of more vectors (as
many as the number of features extracted by their previous
layer), thus we could represent their features by a series of
surfaces each corresponding to one feature of the previous
layer. Because this representation is harder to relate to the
actual input from the camera activating the feature, we
chose to fuse these surfaces into their corresponding activ-
ity of ON and OFF events. The features of every layer of
the architecture will then be represented as a set of two
surfaces such as in Fig. 3, showing an image of the activity
of ON and OFF events associated to the feature, this what
is represented Fig. 4 in the gray boxes representing the dif-
ferent layers.

3.4 Classification
In this section we describe how the output of Layer 3 can be
used as features for object recognition. Training of the rec-
ognition algorithm consists of two main steps. In the first
step, different stimuli are presented to the model to learn
the time-surface prototypes (referred to in the next sections
as features) computed as described in the previous section.

Fig. 4. View of the proposed hierarchical model. From left to right, a moving digit (a) is presented to the ATIS camera (b) which produces ON and OFF
events (c) which are fed into Layer 1. The events are convolved with exponential kernels (d) to build event contexts from spatial receptive field of side-
length ð2R1 þ 1Þ. These contexts are clustered into N1 features (e). When a feature is matched, it produces an event (f). Events from the N1 features
constitute the output of the layer (g). Each layer k (gray boxes) takes input from its previous layer and feeds the next by reproducing steps (d)-(g).
The output of Layer k is presented between Layer k and kþ 1 ((g),(h),(i)). To compute event contexts, each layer considers a receptive field of side-
length ð2Rk þ 1Þ around each pixel. The event contexts are compared to the different features (represented as surfaces in the gray boxes as
explained in Section 3.3) and the closest one is matched. The images next to each features show the activation of their associated features in each
layer. These activations constitute the output of the layer. The output (i) of the last layer is then fed to the classifier (j) which will recognize the object.

1350 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 7, JULY 2017

Deeper

46

Deep Temporal Learning with Adaptive Temporal Feedback:

Temporal Surfaces

X. Lagorce, G. Orchard, F. Galluppi, B. E. Shi, R.B. Benosman, HOTS : A Hierarchy Of event- based Time-Surfaces for pattern recognition, 2016

July 11, IEEE Transaction on Pattern Analysis and Machine Intelligence 39(7) :1346-1359, doi :10.1109/TPAMI.2016.2574707

47

Deep Temporal Learning with Adaptive Temporal Feedback:

Temporal Surfaces

X. Lagorce, G. Orchard, F. Galluppi, B. E. Shi, R.B. Benosman, HOTS : A Hierarchy Of event- based Time-Surfaces for pattern recognition, 2016

July 11, IEEE Transaction on Pattern Analysis and Machine Intelligence 39(7) :1346-1359, doi :10.1109/TPAMI.2016.2574707

48

Computation Platfoms?

Two tendencies

Biomimetism Understand and Accelerate

49

From: Goi, E., Zhang, Q., Chen, X. et al. Perspective on photonic memristive neuromorphic computing. PhotoniX 1, 3 (2020).
https://doi.org/10.1186/s43074-020-0001-6

Computation Platfoms?

Replicate

50

https://wiki.ebrains.eu/bin/view/Collabs/
neuromorphic/BrainScaleS/

~4 Million bio-realistic neurons

880 Million learning synapses

105 faster than real time
164 Giga-events/s (normal)

1 Tera-event/s (burst)

several hundreds of kW [2010]

Analog vs Digital

SpiNNaker
1 millon processors
200 million million actions per second

51

Neuromorphic Computing

[from The Scientist, 2019]

Today’s digital neuromorphic
hardware

52

I/
O

I/
O

m
em

o
ry

Event-based
Machine
Learning
Module

Event-based
Processing

Communication
AER Module

C
o

m
m

u
n

ication

A
ER

 M
o

d
u

le

Communication
AER Module

I/
O

A Processing Solution Adapted to Event Data

Events

Vision

Analog

Digital

LIDAR

Radar Audio

IMU

• Architecture for Event per Event: programmable

event-based computation and machine learning

• Industry standard I/O and programmability

• Scalable, enabling fast and cost-effective derivatives

<10-100mW and up to 20 GigaEvents/s processing

SPEAR-
1

understand

53

https://www.summerrobotics.ai

7

VII . RESULTS

A. Experiment

The method is applied on a scene containing two objects

placed around one meter away from the system. We used a

SPSM of 20⇥30 symbols and the pattern codification is done

using the dutycycle of the signal. The neighborhood in the

burst filter is set to 1 (3 ⇥ 3 pixels) and signal’s frequency

is set to 20Hz for performance issues. The algorithm runs on

MatLab and even if it could be heavily parallelized, it wasn’ t

the case on this experiment and real time wasn’ t achieve. An

image of accumulated outputs from filters is given in Fig. 9,

colors in the image reflect the estimation of the dutycycle by

each pixel associated filter. Point correspondance is performed

by extracting the 3 ⇥ 3 dutycycle based codewords and as

pattern’s dots are bigger than a single pixel, we perform a

spatial averaging to obtain a sub-pixel position of the dot in

the camera frame. After triangulation, a 3D point cloud is

obtained (Fig. 10)

Fig. 9. Image of the projected pattern as extracted by the algorithm. Colors
correspond to the estimated dutycycle.

Fig. 10. 3D point cloud.

VII I . CONCLUSION AND DISCUSSION

This paper introduced a methodology that makes use of the

hguh temporal resolution of the event based sensor to rethink

the problem of structured light depth reconstruction. We used

Fig. 11. Reconstructed depth

a unique spatial distribution of light patterns composed of

elements each flickering at a unique frequency. We also used

the idea of random shift allowing each neighboorhood to be

unique. Each methodology relying on the combined use of an

event based camera and a light projector coding each spatial

position in the frequency domain can make use of the devel-

oped approach. There are several ways to decode frequencies

from the output of the event based camera. The method used

here could be bettered, using more precise event based camera

allowing fequency to be extracted from the timing of the

oscillation of each pattern from inter spike information. If

that condition is fulfilled even simpler patterns could be used

without the need to rely on unique neighborhoods.

REFERENCES

[1] A. D. L. Escalera, L. Moreno, M. A. Salichs, and J. M.
Armingol, “Continuous mobile robot localization by using structured
light and a geometric map,” International Journal of Systems
Science, vol. 27, no. 8, pp. 771–782, 1996. [Online]. Available:
http://www.tandfonline.com/doi/abs/10.1080/00207729608929276

[2] M. Asada, “Map building for a mobile robot from sensory data,”
Systems, Man and Cybernetics, IEEE Transactions on, vol. 20, no. 6,
pp. 1326–1336, 1990.

[3] Y. Kakinoki, T. Koezuka, S. Hashinami, and M. Nakashima, “Wide-
area, high dynamic range 3-d imager,” in Proc. SPIE 1194, Optics,
Illumination, and Image Sensing for Machine Vision IV, 1990.

[4] R. T. Chin, “Automated visual inspection: 1981 to 1987,” Computer
Vision, Graphics, and Image Processing, vol. 41, no. 3, pp. 346–381,
1988. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/0734189X88901089

[5] E. M. Petriu, Z. Sakr, H. J. W. Spoelder, and A. Moica, “Object
recognition using pseudo-random color encoded structured light,” in
Instrumentation and Measurement Technology Conference, 2000. IMTC
2000. Proceedings of the 17th IEEE, vol. 3. IEEE, 2000, pp.
1237–1241. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.
jsp?arnumber=848675

[6] J. Park, G. N. DeSouza, and A. C. Kak, “Dual-beam structured-light
scanning for 3-d object modeling,” in 3-D Digital Imaging and
Modeling, 2001. Proceedings. Third International Conference on.
IEEE, 2001, pp. 65–72. [Online]. Available: http://ieeexplore.ieee.org/
xpls/abs all.jsp?arnumber=924399

[7] D. Page, A. Koschan, Y. Sun, and M. Abidi, “Laser-based imaging
for reverse engineering,” Sensor Review, vol. 23, no. 3, pp. 223–229,
2003. [Online]. Available: http://www.emeraldinsight.com/journals.htm?
issn=0260-2288&volume=23&issue=3&articleid=876385&articletitle=
Laser-based+imaging+for+reverse+engineering&

[8] R. Klette, K. Schlüns, and A. Koschan, Computer
vision: three-dimensional data from images. Springer
Singapore, 1998, vol. 20. [Online]. Available:

7

VII . RESULTS

A. Experiment

The method is applied on a scene containing two objects

placed around one meter away from the system. We used a

SPSM of 20⇥30 symbols and the pattern codification is done

using the dutycycle of the signal. The neighborhood in the

burst filter is set to 1 (3 ⇥ 3 pixels) and signal’s frequency

is set to 20Hz for performance issues. The algorithm runs on

MatLab and even if it could be heavily parallelized, it wasn’ t

the case on this experiment and real time wasn’ t achieve. An

image of accumulated outputs from filters is given in Fig. 9,

colors in the image reflect the estimation of the dutycycle by

each pixel associated filter. Point correspondance is performed

by extracting the 3 ⇥ 3 dutycycle based codewords and as

pattern’s dots are bigger than a single pixel, we perform a

spatial averaging to obtain a sub-pixel position of the dot in

the camera frame. After triangulation, a 3D point cloud is

obtained (Fig. 10)

Fig. 9. Image of the projected pattern as extracted by the algorithm. Colors
correspond to the estimated dutycycle.

Fig. 10. 3D point cloud.

VII I . CONCLUSION AND DISCUSSION

This paper introduced a methodology that makes use of the

hguh temporal resolution of the event based sensor to rethink

the problem of structured light depth reconstruction. We used

Fig. 11. Reconstructed depth

a unique spatial distribution of light patterns composed of

elements each flickering at a unique frequency. We also used

the idea of random shift allowing each neighboorhood to be

unique. Each methodology relying on the combined use of an

event based camera and a light projector coding each spatial

position in the frequency domain can make use of the devel-

oped approach. There are several ways to decode frequencies

from the output of the event based camera. The method used

here could be bettered, using more precise event based camera

allowing fequency to be extracted from the timing of the

oscillation of each pattern from inter spike information. If

that condition is fulfilled even simpler patterns could be used

without the need to rely on unique neighborhoods.

REFERENCES

[1] A. D. L. Escalera, L. Moreno, M. A. Salichs, and J. M.
Armingol, “Continuous mobile robot localization by using structured
light and a geometric map,” International Journal of Systems
Science, vol. 27, no. 8, pp. 771–782, 1996. [Online]. Available:
http://www.tandfonline.com/doi/abs/10.1080/00207729608929276

[2] M. Asada, “Map building for a mobile robot from sensory data,”
Systems, Man and Cybernetics, IEEE Transactions on, vol. 20, no. 6,
pp. 1326–1336, 1990.

[3] Y. Kakinoki, T. Koezuka, S. Hashinami, and M. Nakashima, “Wide-
area, high dynamic range 3-d imager,” in Proc. SPIE 1194, Optics,
Illumination, and Image Sensing for Machine Vision IV, 1990.

[4] R. T. Chin, “Automated visual inspection: 1981 to 1987,” Computer
Vision, Graphics, and Image Processing, vol. 41, no. 3, pp. 346–381,
1988. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/0734189X88901089

[5] E. M. Petriu, Z. Sakr, H. J. W. Spoelder, and A. Moica, “Object
recognition using pseudo-random color encoded structured light,” in
Instrumentation and Measurement Technology Conference, 2000. IMTC
2000. Proceedings of the 17th IEEE, vol. 3. IEEE, 2000, pp.
1237–1241. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.
jsp?arnumber=848675

[6] J. Park, G. N. DeSouza, and A. C. Kak, “Dual-beam structured-light
scanning for 3-d object modeling,” in 3-D Digital Imaging and
Modeling, 2001. Proceedings. Third International Conference on.
IEEE, 2001, pp. 65–72. [Online]. Available: http://ieeexplore.ieee.org/
xpls/abs all.jsp?arnumber=924399

[7] D. Page, A. Koschan, Y. Sun, and M. Abidi, “Laser-based imaging
for reverse engineering,” Sensor Review, vol. 23, no. 3, pp. 223–229,
2003. [Online]. Available: http://www.emeraldinsight.com/journals.htm?
issn=0260-2288&volume=23&issue=3&articleid=876385&articletitle=
Laser-based+imaging+for+reverse+engineering&

[8] R. Klette, K. Schlüns, and A. Koschan, Computer
vision: three-dimensional data from images. Springer
Singapore, 1998, vol. 20. [Online]. Available:

3

Fig. 3. Experimental setup

I I I . PATTERN CODIFICATION STRATEGIES

To get the better out of the ATIS sensor, it is mandatory

to choose a suitable pattern codification. In the event domain,

the only information available is the polarity and timestamp

of pixels, thus the correspondance problem can’ t be solve by

color or grey level coding. Moreover, the need for an asyn-

chronous system impose that our pattern can be segmented

in small independent patches that we could use to extract

local information only when it is needed. This constraint has

a direct impact on the spatial organisation of the pattern and

direct methods like the one used in ?? must be discarded.

In the next section we expand over three different methods

that could be used to gather local data independently as well

as being decodable without too much computation from the

sensor’s output to ensure a decent reconstruction speed. The

first method we will develop is based on the well known

time-multiplexing binary coding (refs?) but encode the binary

frames as a signal with set frequency and dutycycle, each

element is then part of a spatial codification that can be

decoded locally. Our second method aim to makeuseof spatio-

temporal continuity of events generated from fast moving

objects to create codewords based on spatial orientation of

multiple moving dots. This approach differs only from the first

in the way information is extracted from the sensor, but the

decoding process is done the same way. Lastly, we developed

an approach based on phase-shifting algorithms, but instead

of evaluating the phase from several shifted patterns (ref), we

continuously move a series of stripes and record precise time

difference between stripe positions from an arbitrary origin,

which gives us a robust measurement. This last method is

able to gather information at the pixel level which is more

accurate than previous ones but in exchange the pattern can

only be segmented roughly for asynchronous projection.

IV. PERIOD AND DUTYCYCLE

As the ATIS sensor is able to perceive really fast changes in

illumination, it is possible to exploit the temporal redudancy

of a blinking pattern. This approach can be viewed as an

extension of standard binary time-multiplexing methods with

the specificity that the different code-words are given by the

frequency (and dutycycle) of the signal projected onto a pixel

Projector plane Camera plane

Scene

C1

p2

P

C2

p1

Fig. 4. Structured light principle. A coded light pattern is projected onto the
scene that is observed by a camera. Decoding the pattern allows the matching
of paired points in the two views (p1 , p2) and by triangulation of the rays
coming from optical centers C1 and C2 , the position of the real point P
is found. Colors in the picture are for clarity only and in our case refers to
different binary signal’s dutycycle for the first method or different motion
orientation for the second.

instead of being computed through a sequence of intensity

values. Fig. ?? shows the pattern spatial organisation, each

color refers to aspecific dutycycle. It uses aDebruijn sequence

that is repeated for each line. Ideally we should have projected

full lines instead of small spots but practical limitations limited

our choices. A periodic projection generates, at the pixel level,

an event stream composed of successive ON and OFF event

bursts following the signal’s periodic behavior. The length and

the number of events constituting each burst is defined by the

contrast and illumination condition as well as the set of biases

used to operate the sensor.

In a perfect case, each edge of the signal would trigger

only one event of the corresponding polarity for each pixel.

In this situation, measuring the inter-event time between

successive ON and OFF events would be enough to get a

correct estimation of the signal’s frequency and dutycycle.

However, because of small imprecisions in the attribution of

timestamps by the sensor’s arbiter and possible variations in

the global illumination, the number of events triggered at each

edge of the signal is not consistent. To ensure at least one

event per period, we have two choices: increase the sensor’s

sensibility to generate bursts at each edge of the signal so

that faulty events are less prevalent, or consider a spatial

neighborhood instead of a single pixel. The first solution has

a major drawback as increasing the number of event at high

speed may generate congestion in the event stream and results

in less accurate timestamps attribution. The second solution,

even if lowering the spatial resolution, is more appropriate.

As a result, instead of considering event streams from each

pixel, we create a set of two streams (one for each polarity)

composed of events from a local pixel neighborhood of size N .

This operation increase the probability of having at least one

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

where c is the speed of light. By mixing the received signal

pr (t) with a replica of pt (t) at the in-phase receiver of

the radar chip [8], and by low-pass filtering the resulting

signal such that the frequency component fc is removed,

the following IF signal is obtained:

r (t) = −
ξ

2
cos 2παTd t + 2π fcTd − παT 2

d . (4)

As the frequency of the baseband signal is proportional

to Td and, therefore, d , its spectrum shows peaks at certain

frequencies corresponding to the distance between the radar

and the surrounding objects (the receive signal being, in fact,

a sum of many signals of the form given by (4) when multiple

targets are present). After the analog-to-digital conversion by

the in-phase ADC, the discrete-time signal r [i] is found as

r [i] = r (t = i T f). (5)

The choice of the ADC sampling period T f impacts the

maximum range coverage dmax of the radar [21]

dmax =
c

2αT f
. (6)

The slope α is defined as follows:

α =
Tc

(7)

where Tc is the chirp duration and is the bandwidth of the

chirp, which impacts the range resolution [21]

dres =
c

2
. (8)

For chirp n, the range profile Rn [k] is defined as the

DFT of r [i]. Peaks in the magnitude of Rn[k] indicate the

presence of a target, while the phase evolution of Rn [k
∗] for a

target at range bin k∗ between successive chirps represents the

micromotions of the target [20] (a small radial displacement

d induces a phase shift φ = (4π/ λ) d). The spectrum of

the micromotions is called the Doppler profile and is defined

as the DFT of Rn [k] along n [20].

B. Gesture Dataset

We have used a custom ultralow-power 8-GHz SISO

radar [8] to acquire a five-class gesture dataset. Table I shows

the dataset content used for the demonstration experiments

reported later on. The gestures were recorded at a distance

of 2 m from the antennas (RX and TX) and were obtained

by swinging the right or left arm in the vertical direction

(gesture one-vertical), by swinging the right or left arm in

the horizontal direction (gesture two-horizontal), by waving

with the right or left hand while keeping the palm facing out

(gesture three-hello), by moving the hand with the palm facing

out toward and away from the radar (gesture four-toward),

and, finally, by recording background activity in which none

of the above gestures appears in a static background (gesture

five-background). It should be noted that such a dataset

is particularly well-suited for comparing the importance of

preprocessing in SNNs and DNNs as radar signals represent

the environment with a lower fidelity compared to images [36],

TABLE I

DATASET CONTENT USED IN THE DEMONSTRATION EXPERIMENTS

Fig. 1. Gesture acquisition setup.

making them more sensitive to proper preprocessing and

feature extraction.

The radar parameters were set as follows: the number of

ADC samples per chirp is 512, the number of chirps per frame

is 192, and the time between chirps is Ts = 1.2 ms, while the

chirp duration Tc is 41 µs. Therefore, the total duration for

a frame capture is 238 ms and T f = 80 ns. Fig. 1 shows

the gesture acquisition setup with the antennas and the radar

read-out boards.

IV. RADAR PREPROCESSING APPROACHES

This section presents the two widely used radar preprocess-

ing approaches that will then be compared in Section VI,

followed by a description of our proposed dimensionality

reduction and sparse coding techniques.

A. µDoppler Signature

We acquire the µDoppler signature plot [20] of each gesture

acquisition in the dataset by computing the 1-D vector Rn [k
∗]

for n = 1, . . . , Ntot (Ntot is the total number of chirps), where

k∗ is the range bin in which the gestures are performed (which

is known a priori since the distance between the human target

and the radar is fixed) and Rn [k] is acquired by DFT as

follows:

Rn [k] =
1
√
L

L

i= 0

w[i]rn [i]e
− j2π ki

L (9)

where L = 512 is the number of ADC samples of rn (the

received IF signal for chirp n) and w denotes the Blackman

window that we used [35].

Authorized licensed use limited to: IMEC. Downloaded on September 16,2021 at 17:52:11 UTC from IEEE Xplore. Restrictions apply.

Radar and LIDAR and much

more…

54

Sight Restoration: Prosthetics and Optogenetics

• Development of Retina Stimulation Goggles

• 3 generations of Retina Prosthetics

• Asynchronous Retina Stimulation: Prosthetics and
Optogenetics

IRIS 2

PRIMA

55

Sight Restoration: Prosthetics and Optogenetics

56

& much more..

Décision making: game
theory stock Market

Low power Online

decoding and

classification

Robotics

ADAS Sensory
Substitution

Always on
sensing

Space

awareness

57

Conclusions

?

Where we came from…

A Chance to Move Perception from
Engineering to Basic Science!

observe understand model

application

A Chance to ground Perception in Basic
Science!

• A whole new world to explore

• A deep paradigm shift for Sensing & AI

• Novel sensors to build

• New adapted processing architectures to design
58

Conclusions

• A whole new world to explore

• A deep paradigm shift for Sensing & AI

• Novel sensors to build

• New adapted processing architectures to design

Physiology
- Models

- Hardware

- Prosthetics

- Robotics

- Computation

59

