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What Went Wrong?

« Computer vision has been reinvented at least three times.
* Too close to the market: applications based research

Tendency to resist novelty choosing applications over potentially more
promising methods that could not yet deliver

* Not idea driven

0.16

Topic distribution of submissions for ICCV 2019

o From Svetlana Lazebnik, Computer Vision: Looking Back to Look Forward (2020)
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Why Are We Using Images?

f » 3 8RS vut

* Images are the optimal structure of data

» Grey Levels as source of information
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Computer Vision: a Heritage from Art!

illum 1n tabula per radios Solis, quam in ceelo contin-
git:hoc eftfi in caelo fuperior pars delquid patiatur,in
radus apparcbitinferior deficere,vt ranio exigitoptica.

Sic nos exaéte Anno 1544 . Louanii eclipfim Solis
obferuauimus, inuenimusg; deficere pauld plus § dex-

* Invention of the camera obscura in 1544 (L. Da Vinci?)
« The mother of all cameras



Origins of Imaging

* Increasing profits: painting faster

» Evolution from portable models for travellers to current
digital cameras

» Evolving from canvas, to paper, to glass, to celluloid, to
pixels



Origins of Video: Motion Picture

Eadweard Muybridge
(1830-1904)

» Early work in motion-picture projection

» Pioneering work on animal locomotion in 1877 and 1878

« Used multiple cameras to capture motion in stop-motion
photographs
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Computer vision,
the Impossible Trade Off!
power vs frame rate

? redundant useless data

# power and resource
hungry: need to
acquire/transmit/store/
process

under-sampling

# motion blur
# displacement between
frames

{ Too many data } Too slow } Light-dependent

High Power & High Latency
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Event Acquisition

Scopes:

 Reduce Data Load and only Detect “meaningful”
events, at the time they happen!

» Avoid burning energy to acquire, transmit and store
information that ends up being trashed

Solutions:
* No generic solution,

 There are almost an infinite number of solutions
to extract events

* Need to be adapted to the dynamics and
nature of the data

12



Event acquisition

Popular solution: Sample on the amplitude axis of signals

f04 X

Y ] D i —

(b)
New Information is detected when it happens
When nothing happens, nothing is sent or processed
Sparse information coding

Time is the most valuable information
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Event acquisition

Popular solution: Sample on the amplitude axis of signals

f04

Af}

Time is the most valuable information
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A 128x128 120dB 15us Latency Asynchronous

Temporal Contrast Vision Sensor

Patrick Lichtsteiner, Christoph Posch, and Tobi Delbruck, Member, IEEE

Cone

————— e — ————

Bipolar cell Ganglion cell

[Alogl|>T
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A QVGA 143 dB Dynamic Range Frame-Free PWM
Image Sensor With Lossless Pixel-Level Video
Compression and Time-Domain CDS

Christoph Posch, Member, IEEE, Daniel Matolin, and Rainer Wohlgenannt

4 Log pixel illuminance

change events (ON/OFF)=
= l b4 /
S
R -

t1 tz time encoded grayscale events

Temporal events and absolute light measurement
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Frames vs Events

conventional
frame-based camera

event-based camera
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Chaotic pendulum tracking

Why Event Based Sensors?

ATIS

VS.
Conventional Camera




Event Time-based Sensor: Grey Levels Events
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Event Cameras

PROPHESECE

METAVISION FOR MACHINES
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Event Cameras

(intel’)ISONY

PROPHESECE

METAVISION FOR MACHINES

J—
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Event cameras have become a commodity

iniLahs

SONY
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How to Process Events?




How to Process Events?
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Event Computation

Time Incremental

"~

Update previous result
incrementally for the
single pixel change

Batch or Frame

Compute the new 1 pixel-
change frame and
compute result using the
whole frame
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Applications: Event Stereovision

X
L ]

epipolar plane 0 \

epipolar line
for x

uu’fll + ?wffgl + ﬂfgl + Uurflg + ﬁv'fgg
+ofaa 4o fag + 0" faz + faz =0,

Af =0

« Matching pixels is hard
« Changing lighting conditions, occlusions, motion blur....
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Event Stereovision

» Matching binocular events only using the time of events
* Two events arriving at the same time and fulfilling geometric
constraints are matched

P.Rogister, R.B. Benosman, S-H. leng, P. Lichtsteiner, T. Delbruck, Asynchronous Event-based Binocu- lar Stereo Matching. 2011 December 23, IEEE
Transactions on Neural Networks 23(2) : 347-353, DOl : 10.1109/TNNLS.2011.2180025
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Event Stereovision

S.H. leng, J. Carneiro, M. Osswald, R. B.Benosman, Neuromorphic Event-Based Generalized Time-based Stereovision, 2018 July 18, Frontiersin
Neuroscience, 12(442), DOI :10.3389/ fnins.2018.00442
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Courtesy Chronocam 2016
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IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2014

Event-Based Visual Flow

Ryad Benosman, Charles Clercq, Xavier Lagorce, Sio-Hoi leng, and Chiara Bartolozzi

For an incoming event :

ep,t) = (p,1)’

Form the surface (event times):

5. R? 5 R3
p—t1= 2.
We then have:
02¢ dZely Vo 1
X (X Yo) = — g () = Vy (X, Yo)
aze ds e|X:XO _ 1
( 0,Y) = dy (y) o)’
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Event Flow

32



Event Flow

« High temporal resolution generates smooth space-time

surfaces
» The slope of the local surface contains the orientation and

amplitude of the optical flow



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2014

Event-Based Visual Flow

Ryad Benosman, Charles Clercq, Xavier Lagorce, Sio-Hoi leng, and Chiara Bartolozzi
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Tracking Real-Time Outdoor Scenes

raw sveants

Z. Ni, S.H. leng, C. Posch, S. Regnier, R.B. Benosman, Visual Tracking using Neuromorphic Asynchronous Event-based Cameras, 24
February 2015 Neural Computation 27(4) :925-53, DOI : 10.1162/NECO-a-00720



Tracking Real-Time Outdoor Scenes
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Z. Ni, S.H. leng, C. Posch, S. Regnier, R.B. Benosman, Visual Tracking using Neuromorphic Asynchronous Event-based Cameras, 24
February 2015 Neural Computation 27(4) :925-53, DOI : 10.1162/NECO-a-00720




Event-Based 3D Tracking and Pose Estimation

R

D. Reverter-Valeiras, G. Orchard, S.H. leng, R.B. Benosman,Neuromorphic Event-Based 3D Pose Estimation, 2016 January 22, Frontiers in Neuromorphic

9(522), DOI : 10.3389/fnins.2015.00522



Low Power and Latency Streaming




Asynchronous Event-Based Fourrier Analysis

Thresholds :

20 %

2N MSSIM

A (Average number of 1 oNT A (Average number of
computation per event) computations per event)
N 064 F----- )
I 05 : Ny
1
1
|
1
L 1 N N L 0 T T I
0 5 10 15 20 0 5 10 15 20 0 0.5 064 !
Significance threshold T (%) Significance threshold T (%) MSSIM

Q. Sabatier, S.H. leng, R.B. Benosman, Asynchronous Event-based Fourier Analysis, 2017 February 6, IEEE Transactions on Image
Processing 26 (5) :2192-2202, DOI : 10.1109/TIP.2017.2661702
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Last Two Decades: Rethinking Computer Vision in The Time Domain
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High Speed Event-based Face Detection

in the Blink of an Eye




Deep Temporal Learning: Time Surfaces

tl t2 t3 t4 t Time Surface

surface amplitude

X (spatial)

a
v

X. Lagorce, G. Orchard, F. Galluppi, B. E. Shi, R.B. Benosman, HOTS : A Hierarchy Of event- based Time-Surfaces for pattern recognition, 2016

42
July 11, IEEE Transaction on Pattern Analysis and Machine Intelligence 39(7) :1346-1359, doi :10.1109/TPAMI.2016.2574707
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Deep Temporal Learning with Adaptive Temporal Feedback:
Temporal Surfaces

CLASSIFIER
i

)

X. Lagorce, G. Orchard, F. Galluppi, B. E. Shi, R.B. Benosman, HOTS : A Hierarchy Of event- based Time-Surfaces for pattern recognition, 2016 47

July 11, IEEE Transaction on Pattern Analysis and Machine Intelligence 39(7) :1346-1359, doi :10.1109/TPAMI.2016.2574707



Deep Temporal Learning with Adaptive Temporal Feedback:
Temporal Surfaces
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X. Lagorce, G. Orchard, F. Galluppi, B. E. Shi, R.B. Benosman, HOTS : A Hierarchy Of event- based Time-Surfaces for pattern recognition, 2016
July 11, IEEE Transaction on Pattern Analysis and Machine Intelligence 39(7) :1346-1359, doi :10.1109/TPAMI.2016.2574707
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Computation Platfoms?

2t

Two tendencies

Biomimetism Understand and Accelerate
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Computation Platfoms?

ot ® Neurons
.
. ® Synapses

Spiking signal

o
Presynaptic cell Synaptic

Myelin sheath  terminals

L‘v".w“\‘-f\_mi\“"uw‘“

/>
)LX\)'\-‘()(,)‘)Q-'
ynapse
R ...~ N
From: Goi, E., Zhang, Q., Chen, X. et al. Perspective on photonic memristive neuromorphic computing. PhotoniX 1, 3 (2020). 50

https://doi.org/10.1186/s43074-020-0001-6



Analog vs Digital

The BrainScaleS neuromorphic
physical model system

SpiNNaker

1 millon'processors:
200 million million actions per second

L R
= ARRNANNNEAN

-
SR MR

HERNNNNNENY

TRENEENNC
a
1]

~4 Million bio-realistic neurons
880 Million learning synapses
105 faster than real time

164 Giga-events/s (normal)

1 Tera-event/s (burst)

several hundreds of kw [2010]

https://wiki.ebrains.eu/bin/view/Collabs/
neuromorphic/BrainScaleS/
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Neuromorphic Computin

Today’s digital neuromorphic

hardware

Il Conventiond

hardware Produces up to
AT SUPERCOMPUTER
hardware A

Not analogous to neural
function. Runs slower
than biological neural

" Produces -2-3

megawatts
BRAN
~85 billion neurons DESKTOP
1 quadrillion synapses COMPUTER
CHIP
Runs vastly slower
SPINNAKER than biological
neural networks
Variable number of

artificial neurons,
typically ~1,000

1 million synapses per
1,000 neurons

Runs at speed of biological

? 4
neural networks : QT P

BRAINSCALES

512 artificial neurons . )
128000 synapses  1luman Brain Project
10,000x faster than biological neural networks

TENS OF MILLIWATTS H t I"'
LoIHI inte
~130,000 artificial neurons
130 million synapses.

Runs at speed of biological neural networks

TENS OF MILLIWATTS [ ]
e
IBM'S TRUENORTH = === =m===
-1 million artificial neurons S g e s e e
— —— —
256 miillion synapses — — —

Runs at speed of biological neural networks

AlID
Uses less than 1 milliwatt

[from The Scientist, 2019] 52



A Processing Solution Adapted to Event Data

Communication
AER Module

SPEAR-
1

Event-based
Machine

| e
T4 -
\ Event-based

Processing

9|NPON ¥3IV
uoedIUNWWO)

® Architecture for Event per Event: programmable AER Module

event-based computation and machine learning

® Industry standard I/O and programmability
® Scalable, enabling fast and cost-effective derivatives

<10-100mW and up to 20 GigaEvents/s processing



Radar and LIDAR and much
more...

Event-Based Structured Light for Depth

Reconstruction using Frequency Tagged Light
Patterns
i T. Leroux, S.-H. Teng and R. Benosman

University of Pittburgh, Carnegie Mellon Univeristy, Sorbonne Universitas
benosman@pitt.edu

Improving the Accuracy of Spiking Neural
Networks for Radar Gesture Recognition
Through Preprocessing

Ali Safa™, Graduate Student Member, IEEE, Federico Corradi, Member, IEEE, Lars Keuninckx,
Tlja Ocket, Member, IEEE, André Bourdoux", Senior Member, IEEE,
Francky Catthoor, Fellow, IEEE, and Georges G. E. Gielen, Fellow, IEEE

USB cable for

radar powering \’

Ethernet
/" cable for
data
recording
Radar map to
Input ike encoder
P :B o Fisttaning $ IF Neurons
A
(o) Accumulate
m—— ) M:mh; '[ﬁ]’{ {wi ]’" L g E e P "’:l
- & Fully-connected
1 & feature maps. e ot i m:yw Ne:mm
Spikes during T1ny © u.ﬁm.i..w -k
time stops

A Aty (Alg.1)

https://www.summerrobotics.ai



Sight Restoration: Prosthetics and Optogenetics

Camera chip in glasses . Retinal stimulator implant

» Captures image 1 * Transmits retinal stimula

1al via the optic

* The brain learns
ee' the image

Infrared data transmitter
* Sends retinal

stimulation signal

H virelessly
receiver in the implant
L 4
)
\ Pocket processor
» i a

" 5 .
*x i-u-ma

visiaon

* Development of Retina Stimulation Goggles
» 3 generations of Retina Prosthetics

» Asynchronous Retina Stimulation: Prosthetics and
Optogenetics
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Sight Restoration: Prosthetics and Optogenetics
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& much more..

Space
awareness

decoding and
classification

Décision making: game
theory stock Market

Robotics

Sensory Always on
Substitution sensing
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Conclusions

A Chance to ground Perception in Basic

Science!
Relativistic orbital motion ’

- Y.
¢ ac oL 3 - .
« Light and bodies move —)-—=3 ‘ k. .
95t ) ~ Dot 5 A~
' on & |

4
on geodetics in the dr \ ¢
spacetime Euler-Liagrange equati
* The 3D "shadow" of a r

geodetic in 4D is the
orbit

observe understand

application

A whole new world to explore

A deep paradigm shift for Sensing & Al

Novel sensors to build

New adapted processing architectures to design

58



-!!! _é - Hardware

Conclusions

—

Computation

A whole new world to explore

A deep paradigm shift for Sensing & Al

Novel sensors to build

New adapted processing architectures to design
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