embedded VISION summit

System Imperatives for Audio and Video AI at the Edge

Dr. Chris Rowen VP of Engineering, Collaboration AI Cisco Systems

The Grand Tradeoff The most essential picture in tech

embedded

Where to Compute

embedded

The Cognitive Hierarchy

embedded

Rowen's Prism Decompose-Analyze-Reconstruct Audio

embedded

The Audio Iceberg

embedded VISION summit

The usual ML suspects:

- Noise reduction
- Speech-To-Text
- Text-To-Speech
- Talker ID
- Keyword trigger

ML below the surface

- Packet loss concealment
- 3D source localization
- Source separation
- Talker-specific recognition
- Accent shifting
- Hybrid edge/cloud STT
- Tone/emotion analysis
- Equipment maintenance
- Underwater acoustic analysis

- Event classification glass break, alarms, explosions
- Audio system diagnosis
- Source environment localization
- Health monitoring Parkinson's, Alzheimers, autism, throat disease
- Language classification
- Dereverberation
- Pronunciation assessment
- Spoof detection

- Non-linear echo cancellation
- Voice activity detection
- Single talker isolation
- Background talker isolation
- Noise analysis/synthesis
- Voice cloning
- Prosody transfer
- Music identification/synthesis

Webex Audio Demo: Noise Removal & Talker Selection

Noise removal (near-talker focus) and speech normalization use-cases

"Optimize for my voice"

embedded

VISION summit

© 2022 Cisco Systems

Rowen's Prism Decompose-Analyze-Reconstruct Video

embedded

The Video Iceberg

embedded VISION summit

The usual ML suspects:

- Object classification/localization
- Scene segmentation
- Face recognition

- Gesture recognition
- 3D body pose
- 3D facial modeling
- Facial animation from audio
- Facial animation from text
- Liveness & spoofing detection
- Content-specific coding

ML below the surface

- Human super-resolution
- Sentiment analysis
- Demographic classification
- Face tracking
- Avatar generation
- User authentication
- Video content abridging

- Lighting/color correction
- Structure from motion
- Environmental assessment
- Visual search/matching
- People/object counting
- Health assessment from motion
- Content classification and digitization

Dealing with Overlapping ML Models

Complex systems run multiple parallel ML models

embedded

VISION summit

Webex example:

- background segmentation
- rich gestures
- face localization
- 3D model

Compete for compute

Challenges in both unified and independent models

When to use ML methods over conventional

- 1. Accuracy matters
- 2. **Complex** scenarios "I can't define it but I know it when I see it"
- 3. Compute/memory **footprint available**: typically > 100 MULs/sample
- 4. Sufficient **data available**. More data → smaller model
- 5. **Non-linear** transformation is OK not feeding 3rd-party ML model

embedded

summit

Grand Challenge: Heterogeneous Media ML Deployment

embedded

VISION

summit

Interfaces and ML

Cloud Consolidation

Edge

Intelligence

Sensor-level

filtering

webex

Stable, exposed interfaces:

- Improve development partitioning and evolution
- May degrade cost, power, size, security

embedded VISION summit

New database and insight sharing models •

Service federation for regional data compliance (e.g. EU GDPR) •

Improved filtering to reduce cloud bandwidth and compute •

- More data de-identification for stricter privacy compliance •
- Model improvement within footprint •

- Easy sensor device mix-and-match
- Tuning on deployment data
- Adapt to evolving up-link and security profiles •

© 2022 Cisco Systems

Where Does ML Silicon Fit In?

Execution Efficiency

embedded

VISION

summit

Guidance

- Know thy application accuracy, data, footprint, latency, use-cases
- 2. Understand tradeoff between development and execution efficiency
 - Don't freeze a sub-optimal algorithm
- 3. Better data beats a bigger network
- Design application hierarchy to move as little data as possible 4.
- 5. ML Responsibly: Fairness + Transparency + Privacy + Security

Some Resources

embedded VISION summit

- My recent blogs on AI in collaboration: <u>https://blog.webex.com/author/crowen/</u>
- An earlier talk on audio/video ML startups: <u>https://youtu.be/McFCQGO-SoQ</u>
- Cisco's Responsible AI manifesto: <u>https://blogs.cisco.com/security/introducing-cisco-responsible-ai-enhancing-technology-transparency-and-customer-trust</u>
- Pushing ML to ultra-low-power TinyML: <u>https://www.tinyml.org/about/</u>
- ONNX Tutorials: <u>https://github.com/onnx/tutorials</u>
- Audio ML with Python: <u>https://opensource.com/article/19/9/audio-processing-machine-learning-python</u>
- Video ML with Python: https://www.analyticsvidhya.com/blog/2018/09/deep-learning-video-classificationpython/
- Recent funding in AI chip startups: <u>https://www.wsj.com/articles/ai-chip-startups-pull-in-funding-as-they-navigate-supply-constraints-11647338402</u>
- 95 AI chip startups: <u>https://github.com/aolofsson/awesome-semiconductor-startups</u>

