embedded VISION summit

Strategies and Methods for Sensor Fusion

Robert LaganièreProfessorCEOUniversity of OttawaSensor Cortek Inc

Perception and sensors

- Human perception is the faculty of capturing the environment using senses and mind
- Machine perception is the faculty of capturing the environment using sensors and processors
 - Each sensor captures information in its own way
 - Processor(s) integrate (fuse) these incoming source of data to produce perceptual information
 - Good sensor fusion should make use of both:
 - The complementarity of the sensor data
 - The redundancy of the sensor data

embedded VISION

Few popular sensors

• Camera

- A passive sensor that captures visible light emitted and reflected by the environment
- Thermal camera
 - A passive sensor that detects the heat emitted by objects in the environment
- Lidar
 - An active sensor that emits pulsed laser to measure range
- Radar
 - An active sensor that transmits and receives frequency modulated waveforms to detect moving targets

Camera:

- · Low power, inexpensive
- Best for classification/ recognition
- · Can be infrared
- No interference (multiple cameras)
- High resolution
- Al research very advanced

· Cons

- Dependent on lighting and visibility
- Affected by shadows/reflections
- Gets dirty easily
- No direct 3D (without stereo)

embedded

VISION

Thermal:

· Pros

- Day/night visibility
- Good under most weather and air conditions
- Sees through thin material
- Accurate temperature measurement
- Offers some privacy protection

· Cons

- Expensive (lens)
- Affected by emissivity and reflection of objects
- Cannot read texture and text
- Can be difficult to interpret under erratic temperature conditions

Lidar:

- Day/night capture
- Direct 3D information
- Excellent accuracy
- Can be long range

· Cons

- Expensive
- Produces sparse data
- Captures shape, not appearance
- Becomes noisy under fog, rain and snow
- Generally includes mechanical parts
- Subject to interference

embedded VISION

Radar:

- Captures direction, distance and speed
- Inexpensive
- Reliable solid-state technology
- Day/night capture
- Good immunity to weather conditions

· Cons

- Poor angular resolution
- Can't detect small objects
- Noisy
- Limited classification ability
- Subject to interference (e.g. background metallic objects)

embedded

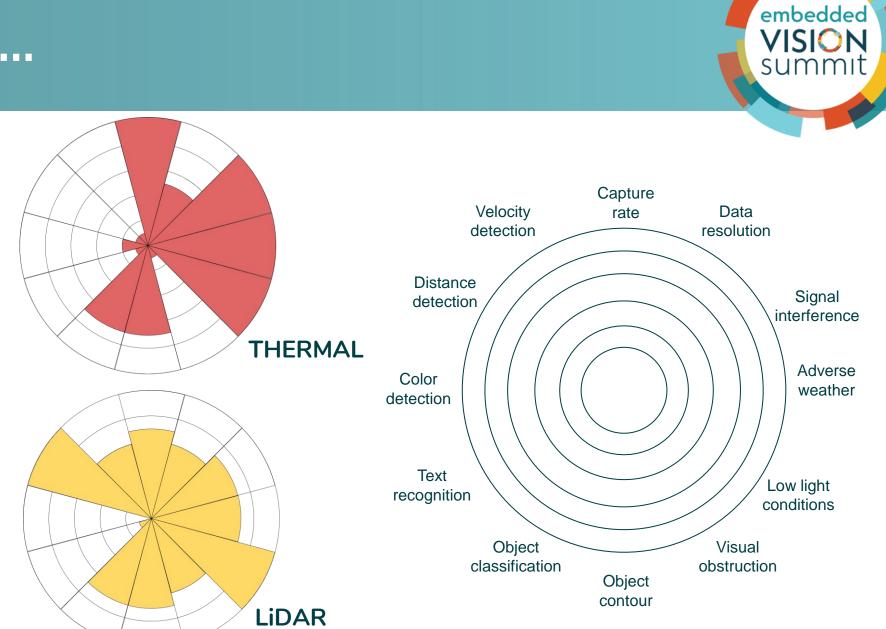
VISION

No one is perfect...

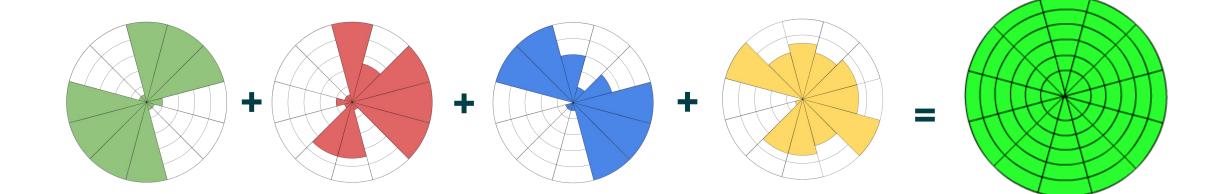
CAMERA

RADAR

CORTEK

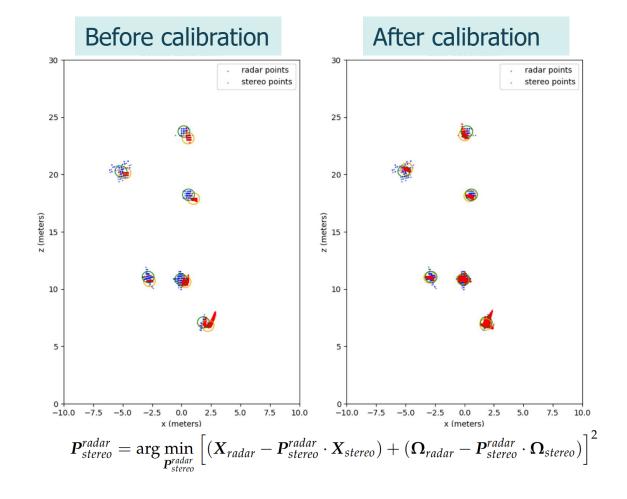


Solution: sensor fusion



Sensor fusion : prerequisite

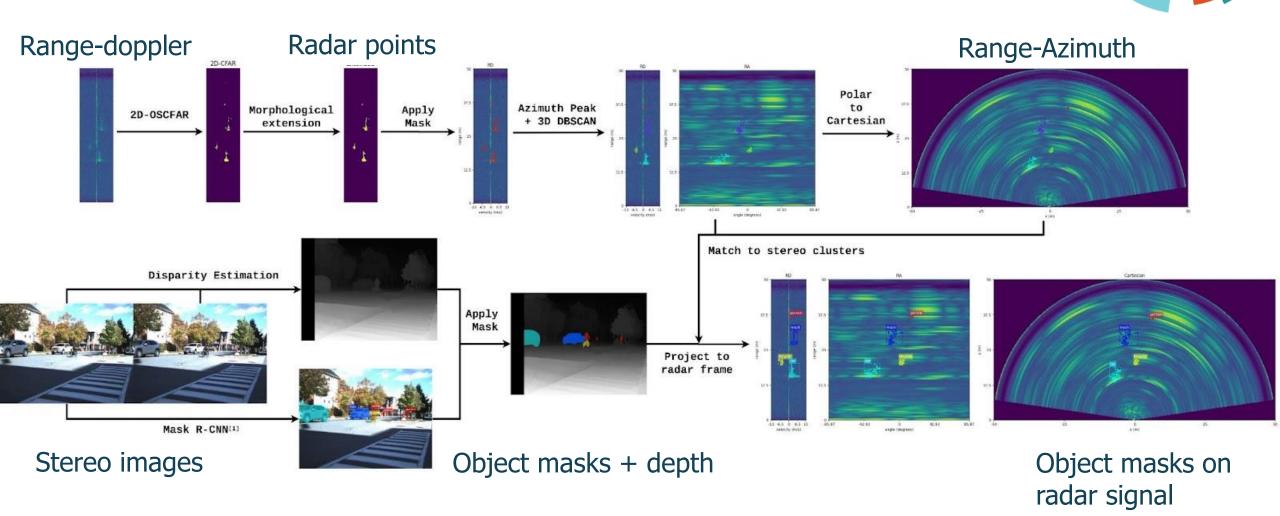
- Sensors must be calibrated and registered one with respect to the others
- Sensors must be synchronized or must use a common time reference
- To produce training data, multimodal sensor data must be jointly annotated



embedded

VISION summit

Example: radar / stereo auto-annotation



embedded

VISION

Multi-sensor fusion strategies

Early fusion

Fuse sensor data and then perform inference using a network

Late fusion

Perform inference from each sensor data and then merge the predictions

Mid-level fusion

Fuse intermediate representations from sensor data and then train a predictor

Sequential fusion

Use sensor data inference in sequence to refine predictions

See FrustrumNet paper in references

n n

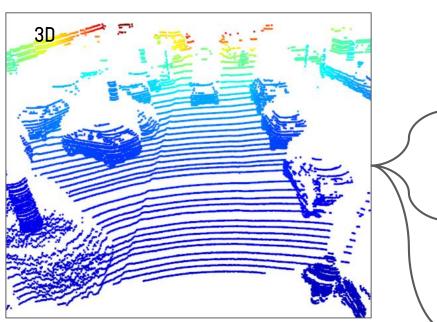
13

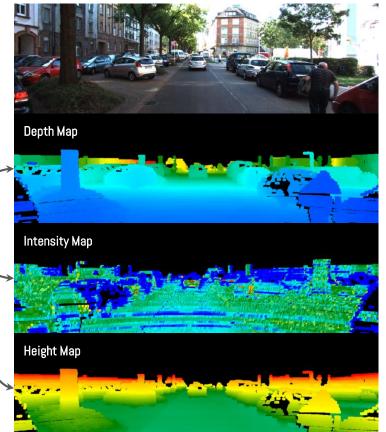
Early fusion

- Fuse sensor data by creating a common tensor representation
 - Which operator should be used for fusion?
 - Does not exploit the specific characteristics of each individual sensor
- Ideally, sensor data should be similar in nature
 - If not, compatible representations should be built
 - Information could be lost when the sensors do not have the same (temporal and spatial) resolution

Early fusion: sensor data representation

• Example: merging a camera frame with a Lidar 3D point cloud





embedded

VISION summit

Merging sensor data: fusion operators

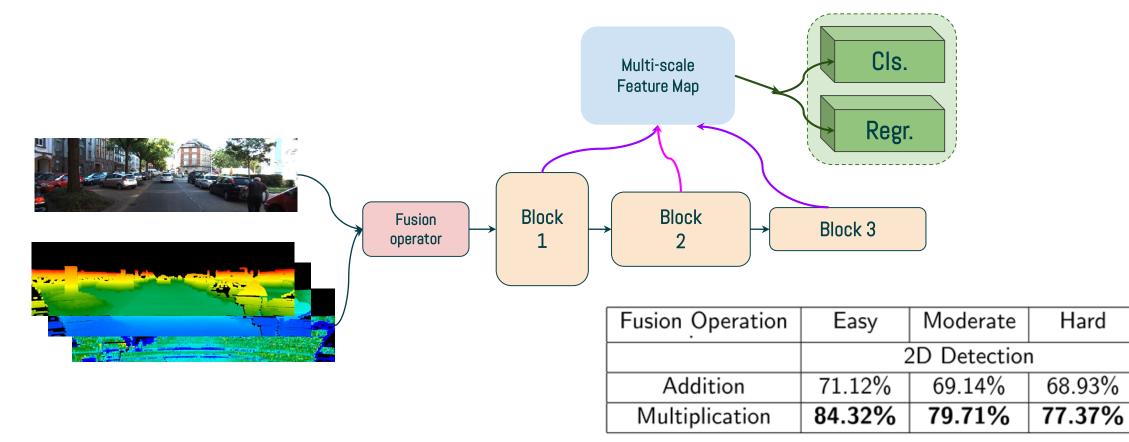
- Multi-modal sensor data (or feature maps) must be merged within a neural network architecture
 - This applies to all sensor fusion strategies
- Main fusion operators
 - Concatenation
 - Arithmetic (addition, multiplication)
 - Order-statistic (max, median)

- Neural subnetwork
- Learnable fusion

embedded VISION

Early fusion: example

• Camera + Fontal view Lidar fusion network

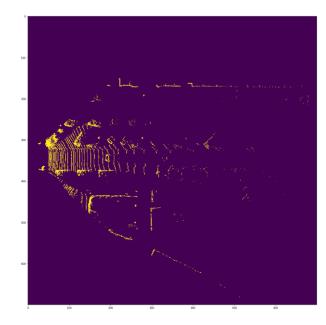


embedded

VISION summit

Late fusion

- Each sensor is processed independently
- The two resulting feature maps are then combined into one
- A classifier produces a prediction from this hybrid map

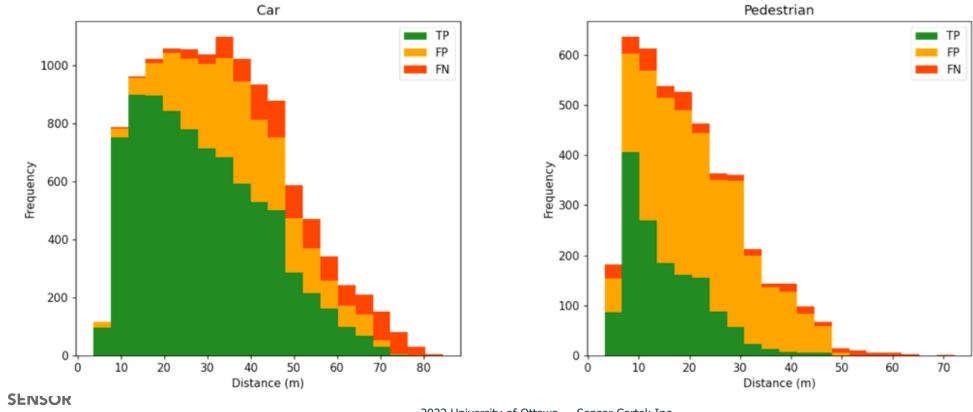


2022 University of Ottawa — Sensor Cortek Inc.

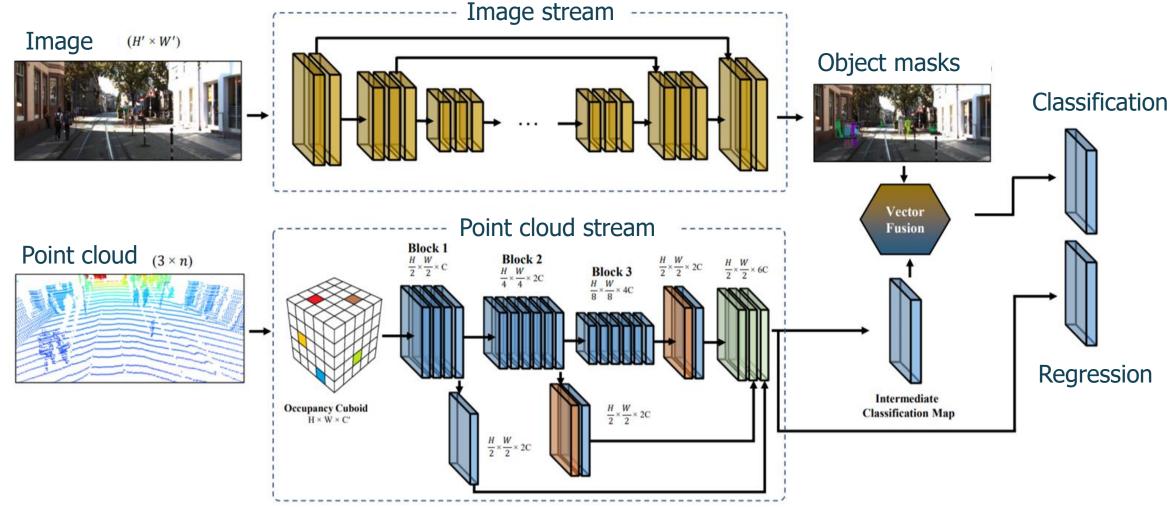
Late fusion: example

CORTEK

- Late fusion networks are often used to increase precision
- Example: car and pedestrian detection



Late fusion: Camera frame + Fontal view Lidar

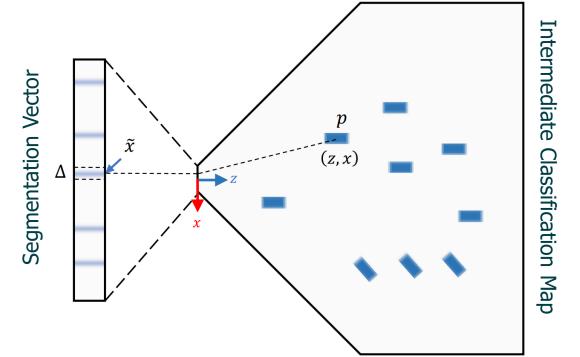


embedded

VISION summit

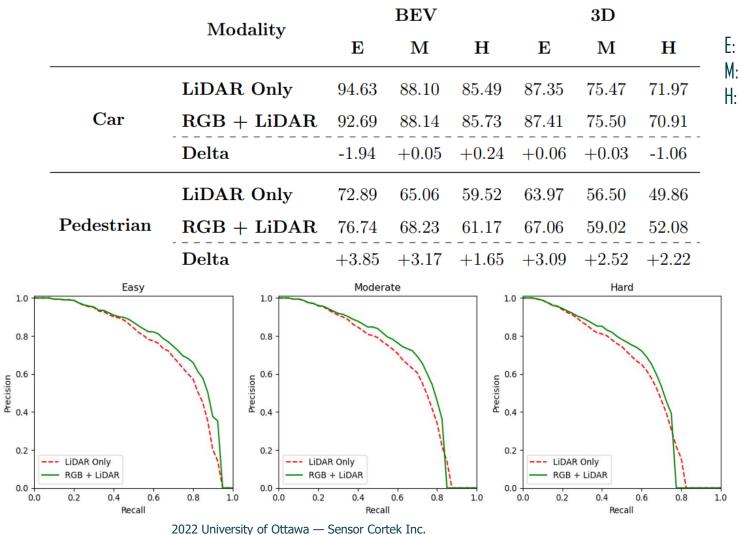
Late fusion: vector fusion operator

- Segmentation vector is max of instance segmentation mask along y-axis
- Lidar bird's eye view (BEV) intermediate classification map reprojected onto segmentation vector
- Positive density is the integration of BEV projection over object size interval Δ



Late fusion: results

 Accuracy of Bird's Eye View predictions (BEV) and 3D Bounding Boxes predictions

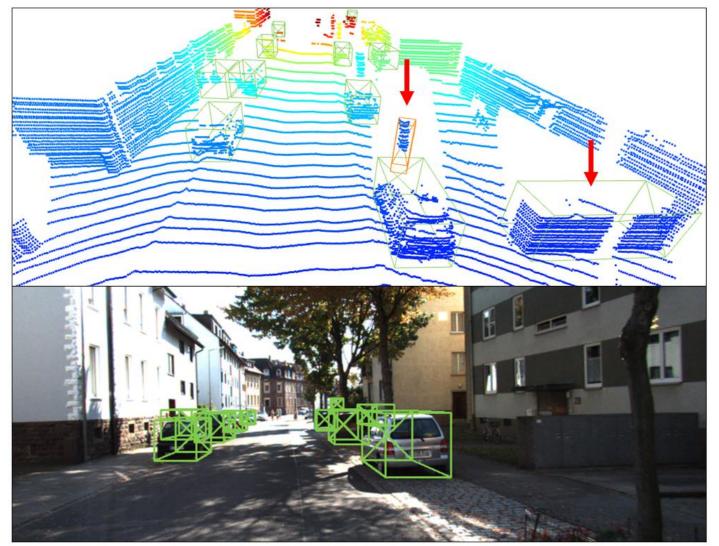


E: easy testset M: moderate testset H: hard testset

embedded

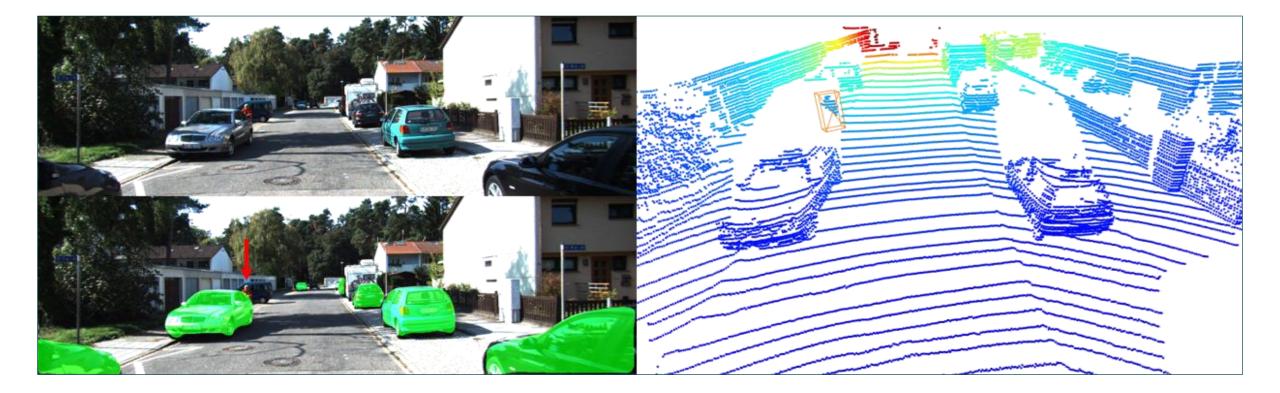
VISION

Late fusion: sample result



embedded VISION summit

Late fusion: sample result (failure case)



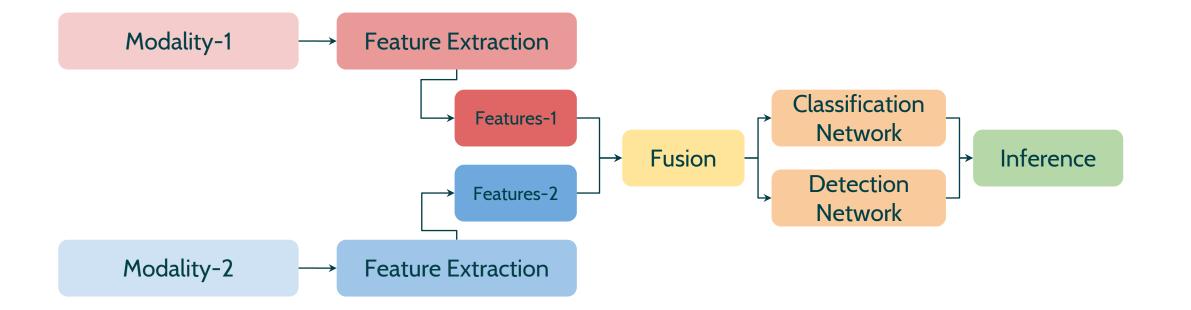
embedded VISION summit

Mid-level fusion

embedded VISION summit

- Independent feature maps are generated from each sensor
- These two branches are combined and then a new CNN branch generates
 prediction
- Because of this additional branch, more complex feature fusion mechanism can be used
- But mid-level fusion model are generally more difficult to train!
 - Lots of parameters
 - Back-propagation in two directions

Mid-level fusion



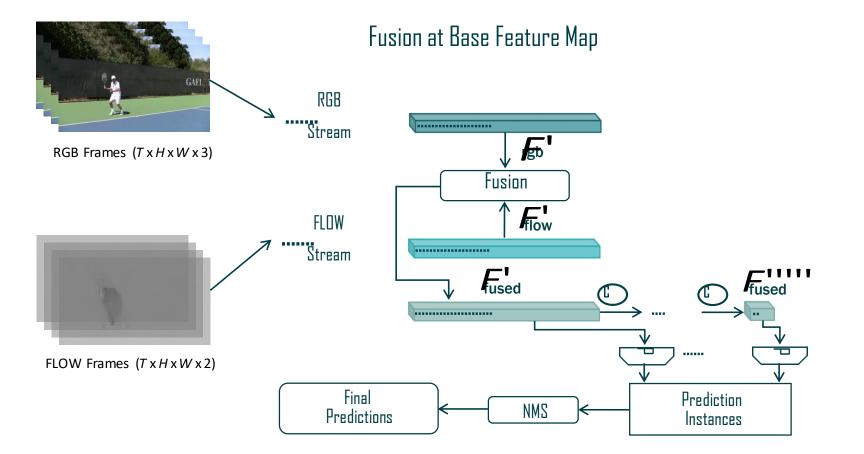
Mid-level fusion: temporal activity recognition

• Given a temporally untrimmed long video sequence, the goal is to classify and temporally localize each activity happening in the video.

The THUMOS Dataset

embedded VISION

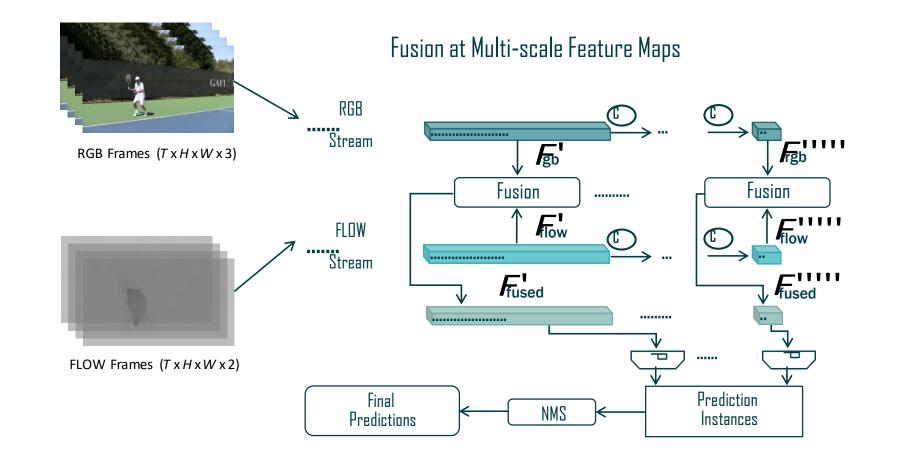
Mid-level fusion at base feature map



embedded

VISION summit

Mid-level fusion at multi-scale



Merging feature maps: learnable fusion

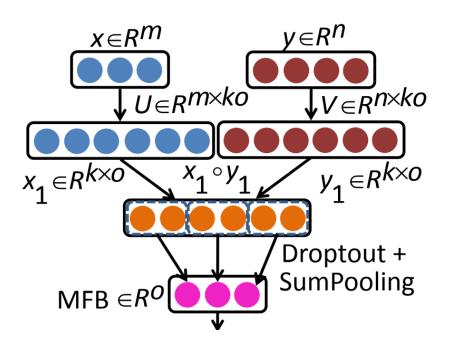
• Based on bilinear operation:

 $\mathbf{y} = \mathbf{a}^{\mathsf{T}}\mathbf{W}\mathbf{b} + \mathbf{k}$

 Computational complexity reduced using Multimodal Low-rank Bilinear Pooling (MLB):

 $\mathbf{W} = \mathbf{U}\mathbf{V}^{\mathsf{T}}$

- And improved based on Multi-modal Factorized Bilinear Pooling (MFB)
- Most general fusion operator
 - The network basically learns how to best merge data
- Enable high interaction between input modalities

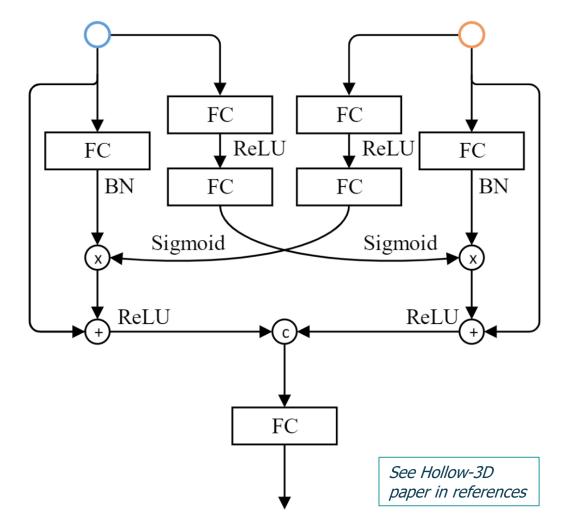


MFB

embedded VISION

Merging sensor data: fusion subnetwork

- Introduces a light-weight gating mechanism for feature selection
- The fusion network benefits from the efficient interaction between sensor modalities
- Information from one branch guides discrimination in the other branch
 - This is an attention mechanism



embedded

VISION

Mid-level fusion: activity recognition accuracy

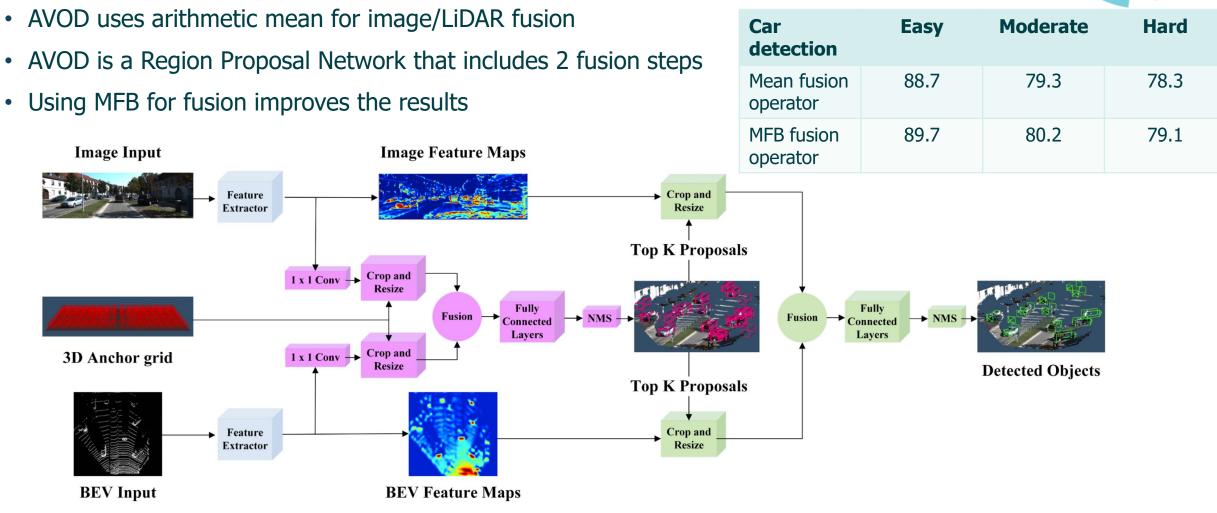
How to Fuse	Where to Fuse					
	Mid-	Late				
	$\mathcal{F}^{'}$	\mathcal{F}^{MS}				
Averaging			46.42			
Sum	47.08	48.48				
Max	46.09	47.53				
Convolution	46.86	47.45				
MLB	46.65	47.77				
MFB	38.29	49.85				
MFB_new	37.47	50.88				

Base vs Multi-Scale Fusion

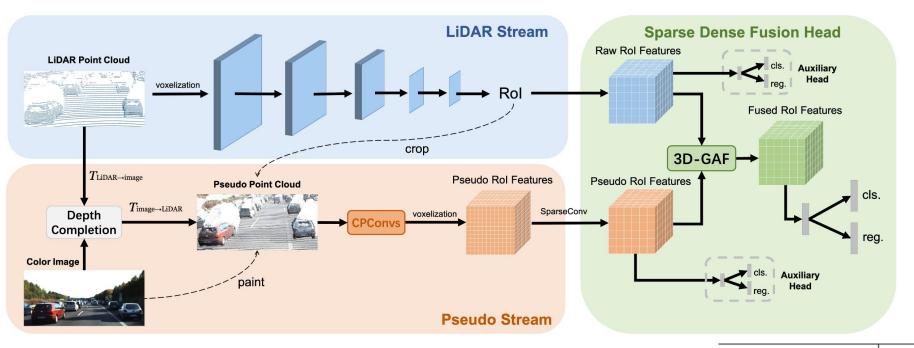
embedded

VISION summit

Another example: the AVOD architecture



One more (recent) example: Sparse Fuse Dense



- 3D Grid-wise Attentive Fusion
 - Sub-network fusion operator
- #1 on KITTI 3D car detection leader board

Method	Modality	BEV				
		mAP	Easy	Mod.	Hard	
Voxel-RCNN [4]	LiDAR	89.94	94.85	88.83	86.13	
SA-SSD [10]	LiDAR	90.67	95.03	91.03	85.96	
SE-SSD [50]	Lidar	91.41	95.68	91.84	86.72	
EPNet [20]	LiDAR+RGB	88.79	94.22	88.47	83.69	
3D-CVF [45]	LiDAR+RGB	88.51	93.52	89.56	82.45	
CLOCs PVCas [25]	LiDAR+RGB	89.81	93.05	89.80	86.57	
SFD (ours)	LiDAR+RGB	91.44	95.64	91.85	86.83	

embedded VISION

- Sensor fusion exploits the complementary characteristics of each sensor
 - Sensor fusion becomes particularly significant under adverse driving conditions
- Early fusion
 - In detection networks, often used to increase recall (the number of detected objects)
 - Relatively easy to train
- Late fusion
 - In detection networks, often used to increase precision
 - Multiple networks to be trained
- Mid-level fusion
 - Potentially optimal performances
 - Particularly adapted to heterogenous sensors
 - Could be very difficult to train

For more information

embedded VISION summit

Resources...

Radar/Stereo dataset

https://www.site.uottawa.ca/research/viva/proje cts/raddet/index.html

THUMOS Dataset

http://crcv.ucf.edu/THUMOS14/home.html

2022 Embedded Vision Summit

See us at the Synopsys booth – Embedded radar demo

References

- Qi C.R. et al. (2018) Frustum PointNets for 3D Object Detection From RGB-D Data, CVPR18.
- Rahman Md A, Laganiere R. (2020) Mid-level fusion for end-to-end temporal activity detection in untrimmed videos, BMVC
- Pfeuffer A., Dietmayer K. (2018). Optimal Sensor Data Fusion Architecture for Object Detection in Adverse Weather Conditions, Int. Conf. on Information Fusion.
- Deng J. et al. (2021) From Multi-View to Hollow-3D, IEEE trans. Circuits and Systems for Video Tech.
- Ku J. et al. (2018) AVOD Joint 3D Proposal Generation and Object Detection from View Aggregation, IROS.
- Wu X. et al. (2022) Sparse Fuse Dense, arXiv.

