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Perception and sensors

• Human perception is the faculty of capturing the environment using senses and 
mind

• Machine perception is the faculty of capturing the environment using sensors and 
processors

• Each sensor captures information in its own way

• Processor(s) integrate (fuse) these incoming source of data to produce 
perceptual information

• Good sensor fusion should make use of both:

• The complementarity of the sensor data

• The redundancy of the sensor data
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Few popular sensors

• Camera

• A passive sensor that captures visible light emitted and reflected by the 
environment

• Thermal camera

• A passive sensor that detects the heat emitted by objects in the environment

• Lidar

• An active sensor that emits pulsed laser to measure range

• Radar

• An active sensor that transmits and receives frequency modulated waveforms 
to detect moving targets
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Camera:

• Pros

• Low power, inexpensive

• Best for classification/ 

recognition

• Can be infrared

• No interference (multiple 

cameras)

• High resolution

• AI research very advanced
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• Cons

• Dependent on lighting and 

visibility

• Affected by 

shadows/reflections

• Gets dirty easily

• No direct 3D (without 

stereo)



Thermal: 
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• Pros

• Day/night visibility

• Good under most weather 

and air conditions

• Sees through thin material

• Accurate temperature 

measurement

• Offers some privacy 

protection 

• Cons

• Expensive (lens)

• Affected by emissivity and 

reflection of objects

• Cannot read texture and 

text

• Can be difficult to interpret 

under erratic temperature 

conditions 



Lidar: 
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• Pros

• Day/night capture

• Direct 3D information

• Excellent accuracy

• Can be long range

• Cons

• Expensive 

• Produces sparse data

• Captures shape, not 

appearance

• Becomes noisy under fog, 

rain and snow

• Generally includes 

mechanical parts

• Subject to interference 



Radar: 
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• Pros

• Captures direction, 

distance and speed 

• Inexpensive

• Reliable solid-state 

technology

• Day/night capture

• Good immunity to 

weather conditions

• Cons

• Poor angular resolution

• Can’t detect small objects

• Noisy

• Limited classification 

ability

• Subject to interference 

(e.g. background metallic 

objects)



No one is perfect…
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Solution: sensor fusion
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• Sensors must be calibrated and 
registered one with respect to the others

• Sensors must be synchronized or must 
use a common time reference

• To produce training data, multimodal 
sensor data must be jointly annotated

Sensor fusion : prerequisite
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Before calibration After calibration
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Example: radar / stereo auto-annotation
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Range-doppler

Stereo images

Radar points

Object masks + depth

Range-Azimuth

Object masks on 
radar signal
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Multi-sensor fusion strategies
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Early fusion
Fuse sensor data and then perform 

inference using a network

Late fusion
Perform inference from each 

sensor data and then merge the 
predictions 

Mid-level fusion
Fuse intermediate representations 
from sensor data and then train a 

predictor

Sequential fusion
Use sensor data inference in 

sequence to refine predictions

See FrustrumNet
paper in references



• Fuse sensor data by creating a common tensor 
representation 

• Which operator should be used for fusion?

• Does not exploit the specific characteristics of 
each individual sensor

• Ideally, sensor data should be similar in nature

• If not, compatible representations should be built

• Information could be lost when the sensors do 
not have the same (temporal and spatial) 
resolution

Early fusion
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• Example: merging a camera frame with a Lidar 3D point cloud

Early fusion: sensor data representation
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• Multi-modal sensor data (or feature
maps) must be merged within a neural 
network architecture

• This applies to all sensor fusion 
strategies

• Main fusion operators

• Concatenation

• Arithmetic (addition, multiplication)

• Order-statistic (max, median)

• Neural subnetwork

• Learnable fusion

Merging sensor data: fusion operators
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• Camera + Fontal view Lidar fusion network

Early fusion: example
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• Each sensor is processed independently

• The two resulting feature maps are then combined into one

• A classifier produces a prediction from this hybrid map

Late fusion
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• Late fusion networks are often used to increase precision

• Example: car and pedestrian detection

Late fusion: example
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Late fusion: Camera frame + Fontal view Lidar 
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• Segmentation vector is max of 
instance segmentation mask 
along y-axis

• Lidar bird’s eye view (BEV) 
intermediate classification map 
reprojected onto segmentation 
vector

• Positive density is the integration 
of BEV projection over object size 
interval ∆ 

Late fusion: vector fusion operator 
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Late fusion: results
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• Accuracy of Bird’s 
Eye View 
predictions (BEV) 
and 3D Bounding 
Boxes predictions

E: easy testset

M: moderate testset

H: hard testset



Late fusion: sample result
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Late fusion: sample result (failure case)
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• Independent feature maps are generated from each sensor

• These two branches are combined and then a new CNN branch generates 
prediction

• Because of this additional branch, more complex feature fusion mechanism can 
be used

• But mid-level fusion model are generally more difficult to train!

• Lots of parameters

• Back-propagation in two directions

Mid-level fusion
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Mid-level fusion
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• Given a temporally untrimmed long video sequence, the goal is to classify and 
temporally localize each activity happening in the video.

Mid-level fusion: temporal activity recognition
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The THUMOS Dataset



Mid-level fusion at base feature map
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Mid-level fusion at multi-scale
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• Based on bilinear operation:  

y = aTWb + k

• Computational complexity reduced using Multi-
modal Low-rank Bilinear Pooling (MLB):

W= UVT

• And improved based on Multi-modal Factorized 
Bilinear Pooling (MFB)

• Most general fusion operator

• The network basically learns how to best 
merge data

• Enable high interaction between input modalities

Merging feature maps: learnable fusion
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MFB



• Introduces a light-weight 
gating mechanism for feature 
selection

• The fusion network benefits 
from the efficient interaction 
between sensor modalities

• Information from one branch 
guides discrimination in the 
other branch

• This is an attention 
mechanism

Merging sensor data: fusion subnetwork
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See Hollow-3D 
paper in references



Mid-level fusion: activity recognition accuracy 
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Base vs Multi-Scale Fusion



Another example: the AVOD architecture
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• AVOD uses arithmetic mean for image/LiDAR fusion

• AVOD is a Region Proposal Network that includes 2 fusion steps

• Using MFB for fusion improves the results

Car 
detection

Easy Moderate Hard

Mean fusion 
operator

88.7 79.3 78.3

MFB fusion 
operator

89.7 80.2 79.1



One more (recent) example: Sparse Fuse Dense
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• 3D Grid-wise Attentive Fusion

• Sub-network fusion operator

• #1 on KITTI 3D car detection leader board



• Sensor fusion exploits the complementary characteristics of each sensor
• Sensor fusion becomes particularly significant under adverse driving conditions 

• Early fusion
• In detection networks, often used to increase recall (the number of detected objects)
• Relatively easy to train 

• Late fusion
• In detection networks, often used to increase precision
• Multiple networks to be trained  

• Mid-level fusion
• Potentially optimal performances
• Particularly adapted to heterogenous sensors
• Could be very difficult to train

Conclusion
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For more information

Resources…

Radar/Stereo dataset

https://www.site.uottawa.ca/research/viva/proje
cts/raddet/index.html

THUMOS Dataset

http://crcv.ucf.edu/THUMOS14/home.html 

2022 Embedded Vision Summit

See us at the Synopsys booth –

Embedded radar demo
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