embedded VISION summit

How Transformers are Changing the Direction of Deep Learning Architectures

Tom Michiels System Architect Synopsys

- The Surprising Rise of Transformers in Vision
- The Structure of Attention and Transformer
- Transformers applied to Vision and Other Application Domains
- Why Transformers are Here to Stay for Vision

CNNs Have Dominated Many Vision Tasks Since 2012

embedded VISION

A Decade of CNN Development...

SYNOPSYS[®]

Beaten in Accuracy by Transformers

Transformer, a model designed for natural language processing

... without any modifications applied to image patches, beats the highly specialized CNNs in accuracy

SYNOPSYS[®]

The Structure of Attention and Transformer

Bert and Transformers

- Bidirectional Encoder Representations from
 Transformers
- A Transformer is a deep learning model that uses attention mechanism
- Transformers were primarily used for Natural Language Processing
 - Translation
 - Question Answering
 - Conversational AI
- Successful training of huge transformers
 - MTM, GPT-3, T5, ALBERT, RoBERTa, T5, Switch
- Transformers are successfully applied in other application domains with promising results for embedded use

embedded

VISION

Convolutions, Feed Forward, and Multi-Head Attention

- The Feed Forward layer of the Transformer is identical to a 1x1 Convolution
- In this part of the model, no information is flowing between tokens/pixels
- Multi-Head Attention and 3x3 Convolution layers are the layers responsible for mixing information between tokens/pixels

SYNOPSYS[®]

embedded

VISION

Convolutions as Hard-Coded Attention

Both Convolution and Attention Networks mix in features of other tokens/pixels

Convolutions mix in features from tokens based on fixed spatial location Attention mix in features from tokens based on learned attention

SYNOPSYS[®]

embedded

VISION

The Structure of a Transformer: Attention

Multi-Head Attention

Attention: Mix in Features of Other Tokens

embedded

VISION summit

The Structure of a Transformer: Attention

Multi-Head Attention

Attention: Mix in Features of Other Tokens

embedded

VISION summit

The Structure of a Transformer: Attention

embedded VISION summit

The Structure of a Transformer: Embedding

Embedding of input tokens and the positional encoding

embedded

VISION

Other Application Domains: Vision, Action Recognition, Speech Recognition

.

Vision Transformers (ViT/L16 or ViT-G/14)

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale(*)

Image is split into tiles

Nх

Vision Transformers are at the time of publication **best-known method for image classification**

They are beating convolutional neural networks in **accuracy** and **training time**, but **not in inference time**.

Pixels in a tile are flattened into tokens (vectors) that feed in the transformer

SYNOPSYS®

embedded

VISION

Vision Transformer \rightarrow Increasing Resolution

SYNOPSYS[®]

embedded

VISION

Swin Transformers

embedded VISION summit

Hierarchical Vision Transformer using Shifted Windows (*)

Adaptation makes Transformers scale for larger images:

- 1. Shifted Window Attention
- 2. Patch-Merging

State of the Art for

- Object Detection (COCO)
- Semantic Segmentation (ADE2OK)

SYNOPSYS[®]

Action Classification with Transformers

Video Swin Transformer

Video Swin Transformers extend the (shifted) window to three dimensions (2D spatial + time)

Today's state of the art on Kinetics-400 and Kinetics-600

SYNOPSYS[®]

embedded VISION

Action Classification with Transformers

Is Space-Time Attention All You Need for Video Understanding?

Space Attention (S)

Attention (ST)

- Transformers can directly be applied to video
- Like for ViT, the video frames are split-up in tiles that feed directly in the Transformer
- Applying attention separately on time and on space "Divided Attention" gives (at time of publication) state of the art results on Kinetics-400 and Kinetics-600 benchmarks

SYNOPSYS[®]

Attention (T+S)

Attention (L+G)

(T+W+H)

embedded

VISION

Speech Recognition

Conformer: Convolution-augmented Transformer for Speech Recognition (*)

SYNOPSYS[®]

Why Attention and Transformers are Here to Stay for Vision

.

Visual Perception beyond Segmentation & Object Detection

What is happening in this scene?

Future applications like security cameras, personal assistants, storage retrieval,.... require a deeper understanding of the world

ightarrow Merging NLP and Vision using the same knowledge representation backend

SYNOPSYS[®]

© 2022 Synopsys

Tesla AI Day: Using Transformers Make Predictions in Vector Space

- Convolutional neural network extract features for every camera
- A transformer is used to:
 - Fuse multiple cameras
 - Make predictions directly in bird-eyeview vector space

embedded

VISION

Why Transformers are Here to Stay in Vision

- Attention based networks outperform CNN-only networks on accuracy
 - Highest accuracy required for high-end applications
- Models that combine Vision Transformers with Convolutions are more efficient at inference
 - Examples: MobileViT^(*), CoAtNet^(**)
- Full visual perception requires knowledge that may not easily be acquired by vision only
 - Multi-modal learning required for a deeper understanding of visual information
- Application integrating multiple sensors benefit from attention-based networks

(*) <u>https://arxiv.org/abs/2110.02178</u> (**) <u>https://arxiv.org/abs/2106.04803v2</u>

SYNOPSYS[®]

embedded VISION

- Transformers are deep learning models primarily used in the field of NLP
- Transformers lead to state-of-the-art results in other application domains of deep learning like vision and speech
 - They can be applied to other domains with surprisingly little modifications
 - Models that combine attention and convolutions outperform convolutional neural networks on vision tasks, even for small models
- Transformers and attention for vision applications are here to stay
 - Real world applications require knowledge that is not easily captured with convolutions

Resources

Resources

ARVIX.org

https://arxiv.org/abs/1706.03762

ARC NPX6 NPU IP

www.synopsys.com/arc

Join the Synopsys Deep Dive

Optimize AI Performance & Power for Tomorrow's Neural Network Applications (Thursday, 12-3 PM)

Synopsys Demos in Booth 719

- Executing Transformer Neural Networks in ARC NPX6 NPU IP
- Driver Management System on ARC EV Processor IP with Visidon
- Neural Network-Enhanced Radar Processing on ARC VPX5 DSP with SensorCortek